剪枝优化:
-
已经选择的元素个数:path.size();
-
所需需要的元素个数为: k - path.size();
-
列表中剩余元素 (n - i) >= 所需需要的元素个数(k - path.size())
-
在集合n中至多要从该起始位置 :
i <= n - (k - path.size()) + 1
,开始遍历 -
为什么有个 +1 呢,因为包括起始位置,我们要是一个左闭的集合。
class Solution {
List<List<Integer>> res;
LinkedList<Integer> path;
public List<List<Integer>> combine(int n, int k) {
res = new ArrayList<>();
path = new LinkedList<>();
backtracking(n, k, 1);
return res;
}
public void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
res.add(new ArrayList<>(path));
return;
}
// 剪枝:如果for循环选择的"起始位置之后"的元素个数已经不足我们需要的元素个数了,那么就没有必要搜索了。
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) {
path.add(i); // 处理节点
backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast(); // 回溯,撤销处理的节点
}
}
}