pandas中DataFrame-mean函数用法

  mean–>平均数

  Pandas中的df.mean()函数默认是等价于df.mean(0),即按轴方向求平均,得到每列数据的平均值。

  相反的df.mean(1)则代表按行方向求平均,得到每行数据的平均值。


举例:

我们 首先导入pandas包

import pandas as pd

创建矩阵

data = {
		'A': [1, 2, 3],
		'B': [4, 5, 6],
		'C': [7, 8, 9]
}
df = pd.DataFrame(data)
df

在这里插入图片描述

首先使用默认方法

df.mean()

在这里插入图片描述

df.mean(0)

在这里插入图片描述

会发现df.mean()和df.mean(0)其实是一样的。


之后我们使用.mean(1),按行取平均

df.mean(1)

在这里插入图片描述
具体的求平均方向:
在这里插入图片描述
如有错误,请在评论区里提出。

pandas库中的DataFrame函数是用来创建和操作二维数据结构的。DataFrame可以看作是一个表格,类似于数据库中的表或Excel中的工作表。它由行索引和列索引组成,可以存储和处理大量的数据。 DataFrame函数可以接受不同类型的输入数据,包括列表、字典、Series和其他DataFrame。它可以用于数据分析、数据清洗、数据处理和数据可视化等任务。 以下是DataFrame函数的一些常用功能: - 创建DataFrame对象:可以通过传入字典、列表、Numpy数组等不同类型的数据来创建DataFrame对象。 - 访问和修改数据:可以使用行索引和列索引来访问和修改DataFrame中的数据。可以通过标签或位置索引进行访问,也可以使用切片操作选择特定的行或列。 - 处理缺失数据:DataFrame提供了方法来处理缺失数据,例如使用fillna()函数填充缺失值或使用dropna()函数删除包含缺失值的行或列。 - 进行数据转换:可以使用DataFrame提供的方法进行数据转换,例如使用apply()函数对每一列或每一行应用自定义函数,或使用map()函数对某一列进行映射操作。 - 数据排序和过滤:可以使用sort_values()函数DataFrame中的数据进行排序,也可以使用条件过滤来选择满足特定条件的行或列。 - 数据统计和汇总:DataFrame提供了各种方法来计算统计信息,例如sum()、mean()、max()、min()等,还可以使用groupby()函数进行分组统计。 - 数据合并和连接:可以使用merge()和concat()函数将多个DataFrame对象合并或连接成一个新的DataFrame
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值