平方立方和公式

平方和公式 、立方和公式

在网上看了几种证明方法,自己来整理一下,尽量尝试写的通俗易懂,第一次写博客,来试一试。


  • 平方和公式

    ∑ i = 1 n i 2 = 1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i=1}^{n}i^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} i=1ni2=12+22+32++n2=6n(n+1)(2n+1)


    证法一:
    由于 ( a + 1 ) 3 − ( a ) 3 = 3 a 2 + 3 a + 1 \quad (a+1)^3-(a)^3=3a^2+3a+1 (a+1)3(a)3=3a2+3a+1,所以可以得到如下式子:
    2 3 − 1 3 = 3 ⋅ 1 2 + 3 ⋅ 1 + 1 3 3 − 2 3 = 3 ⋅ 2 2 + 3 ⋅ 2 + 1 4 3 − 3 3 = 3 ⋅ 3 2 + 3 ⋅ 3 + 1 ⋮ ( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 \begin{aligned} 2^3 &- 1^3 &= &\quad 3 \cdot 1^2 + 3 \cdot 1 + 1\\ 3^3 &- 2^3 &= &\quad 3 \cdot 2^2 + 3 \cdot 2 + 1\\ 4^3 &- 3^3 &= &\quad 3 \cdot 3^2 + 3 \cdot 3 + 1\\ &\vdots\\ &\quad\\ (n+1)^3 &- n^3 &= &\quad 3n^2 + 3n + 1\\ \end{aligned} 233343(n+1)3132333n3====312+31+1322+32+1332+33+13n2+3n+1
    将上面的式子左边右边依次相加得到如下:
    ( n + 1 ) 3 − 1 3 = 3 ⋅ ∑ i = 1 n i 2 + 3 ⋅ n ( n + 1 ) 2 + n \begin{aligned} (n+1)^3&-1^3&=\quad3\cdot \sum_{i=1}^{n}i^2+3\cdot \frac{n(n+1)}{2}+n\\ \end{aligned} (n+1)313=3i=1ni2+32n(n+1)+n
    即:
    ∑ i = 1 n i 2 = ( n + 1 ) 3 − 1 3 − n ( n + 1 ) 2 − n 3 = 2 n 3 + 3 n 2 + n 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} \sum_{i=1}^{n}i^2&=\frac{(n+1)^3-1}{3} - \frac{n(n+1)}{2} - \frac{n}{3}\\ &=\frac{2n^3+3n^2+n }{6}\\ &=\frac{n(n+1)(2n+1)}{6} \end{aligned} i=1ni2=3(n+1)312n(n+1)3n=62n3+3n2+n=6n(n+1)(2n+1)
    ∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \quad\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1),证毕。


    证法二:
    由于 n 2 = n 2 − n + n = n ( n − 1 ) + n = 2 C n 2 + C n 1 \quad n^2 = n^2 - n + n= n(n - 1) + n = 2C_n^2 + C_n^1 n2=n2n+n=n(n1)+n=2Cn2+Cn1,因此则有:

    ∑ i = 1 n i 2 = 1 2 + 2 2 + 3 2 + ⋯ + n 2 = 1 2 + ( 2 C 2 2 + C 2 1 ) + ( 2 C 3 2 + C 3 1 ) + ⋯ + ( 2 C n 2 + C n 1 ) = 1 + 2 ( C 2 2 + C 3 2 + ⋯ + C n 2 ) + ( C 2 1 + C 3 1 + ⋯ + C n 1 ) = 1 + 2 C n + 1 3 + C n + 1 2 − 1 = n ( n − 1 ) ( n + 1 ) 3 + n ( n + 1 ) 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} \sum_{i=1}^{n}i^2 &= 1^2 + 2^2 + 3^2 + \cdots + n^2\\ &=1^2 + (2C_2^2 + C_2^1) + (2C_3^2 + C_3^1) + \cdots + (2C_n^2 + C_n^1)\\ &=1 + 2(C_2^2 + C_3^2 + \cdots + C_n^2) + (C_2^1 + C_3^1 + \cdots + C_n^1)\\ &=1 + 2C_{n+1}^3 + C_{n+1}^2 - 1\\ &=\frac{n(n-1)(n+1)}{3} + \frac{n(n+1)}{2}\\ &=\frac{n(n+1)(2n+1)}{6} \end{aligned} i=1ni2=12+22+32++n2=12+(2C22+C21)+(2C32+C31)++(2Cn2+Cn1)=1+2(C22+C32++Cn2)+(C21+C31++Cn1)=1+2Cn+13+Cn+121=3n(n1)(n+1)+2n(n+1)=6n(n+1)(2n+1)
    ∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \quad\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1),证毕。


    可能有人要问为什么 C 2 2 + C 3 2 + ⋯ + C n 2 = C n + 1 3 \quad C_2^2 + C_3^2 + \cdots + C_n^2 = C_{n+1}^3 C22+C32++Cn2=Cn+13 ,这是组合数的一个性质:
    C n + 1 m = C n m − 1 + C n m ( m ≤ n ) C_{n+1}^m = C_n^{m-1} + C_n^m (m \leq n) Cn+1m=Cnm1+Cnm(mn)

    来举个简单的例子吧,假设你要从5个女人中选中2个女人出去玩,5个女人中有个女人叫翠花,5选2也就是 C 5 2 = 10 C_5^2=10 C52=10 ,在你选出的10组中,其实也就可以分成两种,有翠花的组和没翠花的组,因此我们可以把 C 5 2 C_5^2 C52这样考虑:有翠花的组,也就是在除了翠花的4个人中选1个和翠花组成一组,即 C 4 1 C_4^1 C41;没翠花的组,也就是在除了翠花的4个人中选2个组成一组,即 C 4 2 C_4^2 C42,因此 C 5 2 = C 4 1 + C 4 2 C_5^2= C_4^1 + C_4^2 C52=C41+C42

    因此可以得到组合数的一个性质,在 n + 1 n+1 n+1 个元素中选出 m m m 个元素,可分为2种情况:有元素 a a a 的组,没有元素 a a a 的组。有元素 a a a 的组即在除了 a a a n n n个元素中选 m − 1 m-1 m1 个元素和 a a a 组成一组。没有元素 a a a 的组即在除了 a a a n n n 个元素中选 m m m 个元素组成一组,因此则有:
    C n + 1 m = C n m − 1 + C n m ( m ≤ n ) C_{n+1}^m = C_n^{m-1} + C_n^m (m \leq n) Cn+1m=Cnm1+Cnm(mn)
    再对上面这个式子进行推导:
    C n + 1 m = C n m − 1 + C n m = C n m − 1 + C n − 1 m − 1 + C n − 1 m = C n m − 1 + C n − 1 m − 1 + C n − 2 m − 1 + C n − 2 m = C n m − 1 + C n − 1 m − 1 + C n − 2 m − 1 + C n − 3 m − 1 + ⋯ + C m − 1 m − 1 \begin{aligned} C_{n+1}^m &= C_n^{m-1} + C_n^m\\ &= C_n^{m-1} + C_{n-1}^{m-1} + C_{n-1}^m\\ &= C_n^{m-1} + C_{n-1}^{m-1} + C_{n-2}^{m-1} + C_{n-2}^m\\ &= C_n^{m-1} + C_{n-1}^{m-1} + C_{n-2}^{m-1} + C_{n-3}^{m-1} + \cdots + C_{m-1}^{m-1} \\ \end{aligned} Cn+1m=Cnm1+Cnm=Cnm1+Cn1m1+Cn1m=Cnm1+Cn1m1+Cn2m1+Cn2m=Cnm1+Cn1m1+Cn2m1+Cn3m1++Cm1m1
    因此 C n + 1 m = C n m − 1 + C n − 1 m − 1 + C n − 2 m − 1 + C n − 3 m − 1 + ⋯ + C m − 1 m − 1 C_{n+1}^m = C_n^{m-1} + C_{n-1}^{m-1} + C_{n-2}^{m-1} + C_{n-3}^{m-1} + \cdots + C_{m-1}^{m-1} Cn+1m=Cnm1+Cn1m1+Cn2m1+Cn3m1++Cm1m1

    我们再回到题目中,因此:

    C 2 2 + C 3 2 + ⋯ + C n 2 = C n + 1 3 C_2^2 + C_3^2 + \cdots + C_n^2 = C_{n+1}^3 C22+C32++Cn2=Cn+13

    C 2 1 + C 3 1 + ⋯ + C n 1 = C n + 1 2 − 1 C_2^1 + C_3^1 + \cdots + C_n^1 = C_{n+1}^2 - 1 C21+C31++Cn1=Cn+121


  • 立方和公式

    ∑ i = 1 n i 3 = 1 3 + 2 3 + 3 3 + ⋯ + n 3 = 1 4 n 2 ( n + 1 ) 2 \sum_{i=1}^{n} i^3=1^3 + 2^3 + 3^3 + \cdots + n^3 =\frac{1}{4}n^2(n+1)^2 i=1ni3=13+23+33++n3=41n2(n+1)2


    证法一:
    由于 ( a + 1 ) 4 − a 4 = 4 a 3 + 6 a 2 + 4 a + 1 (a+1)^4 - a^4 = 4a^3 + 6a^2 + 4a + 1 (a+1)4a4=4a3+6a2+4a+1,所以可以得到如下:
    2 4 − 1 4 = 4 ⋅ 1 3 + 6 ⋅ 1 2 + 4 ⋅ 1 + 1 3 4 − 2 4 = 4 ⋅ 2 3 + 6 ⋅ 2 2 + 4 ⋅ 2 + 1 4 4 − 3 4 = 4 ⋅ 3 3 + 6 ⋅ 3 2 + 4 ⋅ 3 + 1 ⋮ ( n + 1 ) 4 − n 4 = 4 n 3 + 6 n 2 + 4 ⋅ n + 1 \begin{aligned} 2^4 &- 1^4 &= &\quad 4 \cdot 1^3 + 6 \cdot 1^2 + 4 \cdot 1 + 1\\ 3^4 &- 2^4 &= &\quad 4 \cdot 2^3 + 6 \cdot 2^2 + 4 \cdot 2 + 1\\ 4^4 &- 3^4 &= &\quad 4 \cdot 3^3 + 6 \cdot 3^2 + 4 \cdot 3 + 1\\ &\vdots\\ &\quad\\ (n+1)^4 &- n^4 &= &\quad 4n^3 + 6n^2 + 4 \cdot n + 1\\ \end{aligned} 243444(n+1)4142434n4====413+612+41+1423+622+42+1433+632+43+14n3+6n2+4n+1
    将上面的式子左边右边依次相加得到如下:
    ( n + 1 ) 4 − 1 4 = 4 ⋅ ∑ i = 1 n i 3 + 6 ⋅ ∑ i = 1 n i 2 + 4 ⋅ n ( n + 1 ) 2 + n \begin{aligned} (n+1)^4&-1^4&=\quad 4 \cdot \sum_{i=1}^{n}i^3 + 6 \cdot \sum_{i=1}^{n}i^2 + 4 \cdot \frac{n(n+1)}{2} +n\\ \end{aligned} (n+1)414=4i=1ni3+6i=1ni2+42n(n+1)+n
    即:
    ∑ i = 1 n i 3 = ( n + 1 ) 4 − 1 4 − 3 2 ⋅ ∑ i = 1 n i 2 − n ( n + 1 ) 2 − n 4 = 1 4 n 2 ( n + 1 ) 2 \begin{aligned} \sum_{i=1}^{n}i^3&=\frac{(n+1)^4-1}{4} - \frac{3}{2} \cdot \sum_{i=1}^{n}i^2 - \frac{n(n+1)}{2} - \frac{n}{4 }\\ &=\frac{1}{4}n^2(n+1)^2 \end{aligned} i=1ni3=4(n+1)4123i=1ni22n(n+1)4n=41n2(n+1)2
    ∑ i = 1 n i 3 = 1 4 n 2 ( n + 1 ) 2 \quad\sum_{i=1}^{n}i^3=\frac{1}{4}n^2(n+1)^2 i=1ni3=41n2(n+1)2,证毕。


    根据平方和公式的证法二,我也想了一个利用组合数来求立方和公式的证法。

    证法二:
    由于 n 3 = n 3 − n + n = n ( n − 1 ) ( n + 1 ) + n = 6 C n + 1 3 + C n 1 \quad n^3 = n^3 - n + n= n(n - 1)(n+1) + n = 6C_{n+1}^3 + C_n^1 n3=n3n+n=n(n1)(n+1)+n=6Cn+13+Cn1,因此则有:

    ∑ i = 1 n i 3 = 1 3 + 2 3 + 3 3 + ⋯ + n 3 = 1 3 + ( 6 C 3 3 + C 2 1 ) + ( 6 C 4 3 + C 3 1 ) + ⋯ + ( 6 C n + 1 3 + C n 1 ) = 1 + 6 ( C 3 3 + C 4 3 + ⋯ + C n + 1 3 ) + ( C 2 1 + C 3 1 + ⋯ + C n 1 ) = 1 + 6 C n + 2 4 + C n + 1 2 − 1 = n ( n − 1 ) ( n + 1 ) ( n + 2 ) 4 + n ( n + 1 ) 2 = n 2 ( n + 1 ) 2 4 \begin{aligned} \sum_{i=1}^{n}i^3 &= 1^3 + 2^3 + 3^3 + \cdots + n^3\\ &=1^3 + (6C_3^3 + C_2^1) + (6C_4^3 + C_3^1) + \cdots + (6C_{n+1}^3 + C_n^1)\\ &=1 + 6(C_3^3 + C_4^3 + \cdots + C_{n+1}^3) + (C_2^1 + C_3^1 + \cdots + C_n^1)\\ &=1 + 6C_{n+2}^4 + C_{n+1}^2 - 1\\ &=\frac{n(n-1)(n+1)(n+2)}{4} + \frac{n(n+1)}{2}\\ &=\frac{n^2(n+1)^2}{4} \end{aligned} i=1ni3=13+23+33++n3=13+(6C33+C21)+(6C43+C31)++(6Cn+13+Cn1)=1+6(C33+C43++Cn+13)+(C21+C31++Cn1)=1+6Cn+24+Cn+121=4n(n1)(n+1)(n+2)+2n(n+1)=4n2(n+1)2
    ∑ i = 1 n i 3 = 1 4 n 2 ( n + 1 ) 2 \quad\sum_{i=1}^{n}i^3=\frac{1}{4}n^2(n+1)^2 i=1ni3=41n2(n+1)2,证毕。


  • 总结

    学习了一下markdown的数学符号就来试试怎么用,不过写起来还是手写的快啊。。。。。。

    vscode还是挺好用的
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值