平方和公式推导

  12 +22 +32 +…+n2 =n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。

    设:S=12 +22 +32 +…+n2

    另设:S1 =12 +22 +32 +…+n2 +(n+1)2 +(n+2)2 +(n+3)2 +…+(n+n)2 ,此步设题是解题的关键,一般人不会这么去设想。有了此步设题,第一:S1 =12 +22 +32 +…+n2 +(n+1)2 +(n+2)2 +(n+3)2 +…+(n+n)2 中的12 +22 +32 +…+n2 =S,(n+1)2 +(n+2)2 +(n+3)2 +…+(n+n)2 可以展开为(n2 +2n+12 )+( n2 +2×2n+22 ) +( n2 +2×3n+32 )+…+( n2 +2×nn+n2 )=n3 +2n(1+2+3+…+n)+ 12 +22 +32 +…+n2 ,即

S1 =2S+n3 +2n(1+2+3+…+n)………………………………………………..(1)

第二:S1 =12 +22 +32 +…+n2 +(n+1)2 +(n+2)2 +(n+3)2 +…+(n+n)2 可以写为:

S1 =12 +32 +52 …+ (2n-1)2 +22 +42 +62 …+(2n)2 ,其中:

22 +42 +62 …+(2n)2 =22 (12 +22 +32 +…+n2 )=4S……………………………………..(2)

12 +32 +52 …+(2n-1)2 =(2×1-1)2 +(2×2-1)2 +(2×3-1) 2 +…+ (2n-1) 2

= (22 ×12 -2×2×1+1) +(22 ×22 -2×2×2+1)2 +(22 ×32 -2×2×3+1)2 +…+ (22 ×n2 -2×2×n+1)2

=22 ×12 +22 ×22 +22 ×32 +…+22 ×n2 -2×2×1-2×2×2-2×2×3-…-2×2×n+n

=22 ×(12 +22 +32 +…+n2 )-2×2 (1+2+3+…+n)+n

=4S-4(1+2+3+…+n)+n……………………………………………………………..(3)

由(2)+ (3)得:S1 =8S-4(1+2+3+…+n)+n…………………………………………..(4)

由(1)与(4)得:2S+ n3 +2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n

即:6S= n3 +2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n

      = n[n2 +n(1+n)+2(1+n)-1]

      = n(2n2 +3n+1)

      = n(n+1)(2n+1)

     S= n(n+1)(2n+1)/ 6

亦即:S=12 +22 +32 +…+n2 = n(n+1)(2n+1)/6……………………………………(5)

以上可得各自然数平方和公式为n(n+1)(2n+1)/6,其中n为最后一位自然数。

由(5)代入(2)得自然数偶数平方和公式为2n(n+1)(2n+1)/3,其中2n为最后一位自然数。

由(5)代入(3)得自然数奇数平方和公式为n(2n-1)(2n+1)/3,其中2n-1为最后一位自然数。

                    由自然数平方和公式推导自然数立方和公式

设S=13 +23 +33 +…+n3 ……………………………………………………….(1)

有S=n3 +(n-1)3 +(n-2)3 +…+13 ……………………………………………...(2)

由(1)+ (2)得:2S=n3 +13 +(n-1)3 +23 +(n-2)3 +33 +…+n3 +13

                =(n+1)(n2 -n+1)

                    +

               (n+1)[(n-1)2 -2(n-1)+22 )

                    +

               (n+1)[(n-2)2 -3(n-2)+32 )

                    +

                    .

                    .

                    .

                    +

               (n+1)(12 -n(n-n+1)(n-n+1+ n2 )

即2S=( n+1)[2(12 +22 +32 +…+n2 )-n-2(n-1) -3(n-2)-…-n (n-n+1)] ………………...(3)

由12 +22 +32 +…+n2 =n(n+1)(2n+1)/ 6代入(2)得:

2S=(n+1)[2n(n+ 1)(2n+1)/6-n-2n-3n-…nn+2×1+3×2+…+n(n-1)]

  =(n+1)[2n(n+1)(2n+1)/6-n(1+2+3+…n)+(1+1)×1+(2+1)×2+…+(n-1+1)(n-1)]

  =(n+1)[2n(n+1)(2n+1)/6-n2 (1+n)/2+12 +1+22 +2+…+(n-1)2 + (n-1)]

  =(n+1)[2n(n+1)(2n+1)/6-n2 (1+n)/2+12 +22 +…+(n-1)2 +1 +2+…+ (n-1)] ……...(4)

由12 +22 +…+(n-1)2 = n(n+1)(2n+1)/6-n 2 ,1+2+…+(n-1)=n(n-1)/2代入(4)得:

   2S=(n+1)[3n(n+1)(2n+1)/6-n2 +n(n-1)/2

     =n2 (n+1)2 /2

即S=13 +23 +33 +…+n3 = n2 (n+1)2 /4

结论:自然数的立方和公式为n2 (n+1)2 /4,其中n为自然数。

自然数偶数立方和公式推导

设S=23 +43 +63 +…+(2n)3

有S=23 (13 +23 +33 +…+n3 )=8n2 (n+1)2 /4=2n2 (n+1) 2

结论:自然数偶数的立方和公式为2n2 (n+1)2 ,其中2n为最后一位自然偶数。

自然数奇数立方和公式推导

设S=13 +23 +33 +…+(2n) 3

由自然数的立方和公式为n2 (n+1)2 /4,其中n为自然数代入左边

有n2 (2n+1)2 =23 +43 +63 +…+(2n) 3 +13 +33 +53 …+(2n-1)3

                 =2n2 (n+1)2 +13 +33 +53 …+(2n-1)3

移项得:13 +33 +53 …+(2n-1)3 =n2 (2n+1)2 -2n2 (n+1)2

                                     =n2 (2n2 -1)

结论:自然数奇数的立方和公式为n2 (2n2 -1),其中2n-1为最后一位自然奇数,即n的取值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值