问题描述
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
Example:
Input:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Output: 4
解题思路
思路一
我们利用动态规划的思想来解决该题,首先我们构建一个和原矩阵相同大小的二维数组,该数组中第
i
i
i行,第
j
j
j列的元素表示为
b
i
,
j
b_{i,j}
bi,j,原矩阵中第
i
i
i行,第
j
j
j列的元素表示为
a
i
,
j
a_{i,j}
ai,j,则
b
i
,
j
b_{i,j}
bi,j的大小为以
a
i
,
j
a_{i,j}
ai,j为正方形右下角所形成的的最大正方形边长。那么我们有以下推导公式:
b
i
,
j
=
b
i
−
1
,
j
−
1
+
k
b_{i,j}=b_{i-1,j-1}+k
bi,j=bi−1,j−1+k
其中,记x为从
a
i
,
j
a_{i,j}
ai,j到
a
i
−
b
i
−
1
,
j
−
1
,
j
a_{i-b_{i-1,j-1},j}
ai−bi−1,j−1,j最大的全是’1’的子串长度,同理y为从
a
i
,
j
a_{i,j}
ai,j到
a
i
,
j
−
b
i
−
1
,
j
−
1
a_{i,j-b_{i-1,j-1}}
ai,j−bi−1,j−1最大的全是’1’的子串长度,则
k
=
m
i
n
{
x
,
y
,
b
i
−
1
,
j
−
1
}
k=min\{x,y,b_{i-1,j-1}\}
k=min{x,y,bi−1,j−1}。
简单来说就是
b
i
,
j
b_{i,j}
bi,j可以由
b
i
−
1
,
j
−
1
b_{i-1,j-1}
bi−1,j−1得到,我们每次计算
b
i
,
j
b_{i,j}
bi,j的时候,都检查其左上角的
b
i
−
1
,
j
−
1
b_{i-1,j-1}
bi−1,j−1所形成的最大正方形面积,然后检查原正方形的外围一圈有多大的长度都是’1’,然后根据左上角形成的正方形边长加上外围一圈的’1’的长度,即可得到当前位置
b
i
,
j
b_{i,j}
bi,j的大小。
Tips: 测试数据中可能有空的矩阵,所以程序开头需要加一个小判断,不然可能会返回访问空指针的报错。
代码:
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
vector<vector<int>> count;
if (matrix.size() == 0) return 0;
int rowSize = matrix.size();
int colSize = matrix[0].size();
for (int i = 0; i < rowSize; i++) {
vector<int> sub(colSize);
count.push_back(sub);
}
for (int i = 0; i < rowSize; i++) {
if (matrix[i][0] == '0') count[i][0] = 0;
else count[i][0] = 1;
}
for (int i = 0; i < colSize; i++) {
if (matrix[0][i] == '0') count[0][i] = 0;
else count[0][i] = 1;
}
for (int i = 1; i < rowSize; i++) {
for (int j = 1; j < colSize; j++) {
if (matrix[i][j] == '0') {
count[i][j] = 0;
continue;
}
int k;
for (k = 1; k <= count[i-1][j-1]; k++) {
if (matrix[i-k][j] == '0' || matrix[i][j-k] == '0') {
break;
}
}
// cout << "i:" << i << " j:" << j << " k:" << k << endl;
count[i][j] = k;
}
}
int max = 0;
for (auto it1 : count) {
for (auto it2 : it1) {
// cout << it2 << " ";
if (max < it2) max = it2;
}
// cout << endl;
}
return max * max;
}
};
运行结果:
虽然从运行结果来看,该算法还是挺高效的,不过通过分析我们可以得到,带算法的时间效率为
O
(
n
3
)
O(n^3)
O(n3),因为我们构建了一个二维数组,且在计算该二维数组的每个元素时,都会检查相应的行和列,至于为什么运行这么迅速,可能是测试数据的原因,导致没有达到该算法的最坏效率,实际运行的效率可能为
O
(
n
2
log
n
)
O(n^2 \log n)
O(n2logn)。
思路二
该查看了其他人的解题代码之后,我学到了一种更加高效的方法。即我们不需要检查左上角形成正方形的外围一圈,我们可以直接通过以下公式得到
b
i
,
j
b_{i,j}
bi,j的大小,即:
b
i
,
j
=
m
i
n
(
b
i
−
1
,
j
,
b
i
,
j
−
1
,
b
i
−
1
,
j
−
1
)
b_{i,j}=min(b_{i-1,j},b_{i,j-1},b_{i-1,j-1})
bi,j=min(bi−1,j,bi,j−1,bi−1,j−1)
事实上,
b
i
−
1
,
j
b_{i-1,j}
bi−1,j就表示了左上角形成的正方形下方的最长’1’序列的长度,同理
b
i
,
j
−
1
b_{i,j-1}
bi,j−1就表示了左上角形成的正方形右方的最长’1’序列的长度。在思路一中的算法,我们每次都是重复检查同一个位置的数据,导致算法效率降低。容易得出,这种算法的时间效率为
O
(
n
2
)
O(n^2)
O(n2)。
代码:
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size();
if (m==0) return 0;
int n = matrix[0].size();
vector<vector<int>> dp(m, vector<int>(n));
int ret = 0;
for (int i=0; i<m; i++)
for (int j=0; j<n; j++){
if (matrix[i][j] == '1'){
if (i==0 || j==0) dp[i][j] = 1;
else{
dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
}
ret = max(ret, dp[i][j]);
}
}
return ret*ret;
}
};