拉格朗日对偶,KKT,SVM

       机器学习通常转化为数学规划问题,拉格朗日对偶是求解带有约束的凸规划的一个重要的技巧。这篇文章从先从理论的角度,介绍拉格朗日对偶的基本思想,在从支持向量机的推导上,应用上面提及的定理。

1,问题定义

       对于上面的问题,原问题是一般的数学规划,此时并不要求目标函数和约束中为凸函数。对于任意的数学规划,如问题P,都会存在一个和其息息相关的数学规划D,D的构造试图引入u,v,将约束加入到目标函数中,从而使得约束条件减少到只有的x属于X。其中D 问题成为原问题的拉格朗日对偶问题。注意在D问题中,有两个层面的优化,里面的优化是针对于x,外面的针对对偶变量u,v。

为什么要建立这么形式的D问题呢?

http://blog.csdn.net/wangkr111/article/details/2117080 这篇博客说明这个问题。

2.解存在的条件定理

       下面的强对偶定理,说明了只有在特殊的f,g为凸函数,h为仿射函数,X为凸集时,上面定义的原问题和对偶问题最优解之间的关系。定理说明了,满足上面条件的凸规划,其拉格朗日对偶函数,两者的最优解相等。定理告诉我们使用拉格朗日技巧的一个界限,界限是指当不满足上面的约束时,使用拉格朗日对偶并不能求解原问题,而从对偶求出的解仅仅作为原问题的上界存在(弱对偶定理)。

                  



上面的条件是一个比较宽泛的条件,例如像SVM的二次优化问题,通过建立拉格朗日对偶函数,对其而不是原问题进行求解,可以将原来的带有N个约束的最优化问题,转变为简单的约束的二次规划问题。从而进行求解。关于这一点会在SVM推导中详细说明这一点。(SVM将原先ill-posed的二次规划转变为简单的二次规划,并使用的快速的算法SMO求解。)

3.最优解与KKT Condition之间的关系。

      KKT Condition是带有约束最优化的一个重要的条件。利用KKT Condition可以在求解出的拉格朗日对偶函数最优解后,来求出原题的最优解。下面的定理说明在f,g为凸函数,h为仿射函数,X为凸集时,KKT Condition和拉格朗日函数的最优解之间存在一一对应的关系。


4. SVM的推导:









  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值