拉格朗日对偶详解

问题简述对偶,是解决最优化问题的一种常用的手段。它能够将一个最优化问题转化成另一个更容易求解的对偶问题。对偶研究中常用的方法是拉格朗日对偶。拉格朗日对偶有以下几个良好的特点:无论原问题是否为凸问题,对偶问题都是凸优化问题对偶问题至少给出了原问题最优解的下界在满足一定条件的时候,对偶问题与原问题的解完全等价对偶问题通常更容易求解基于这样的特点,拉格朗日对偶经常被用来求解最优化问题,而...
摘要由CSDN通过智能技术生成

问题简述

对偶,是解决最优化问题的一种常用的手段。它能够将一个最优化问题转化成另一个更容易求解的对偶问题。对偶研究中常用的方法是拉格朗日对偶。拉格朗日对偶有以下几个良好的特点:

  • 无论原问题是否为凸问题,对偶问题都是凸优化问题
  • 对偶问题至少给出了原问题最优解的下界
  • 在满足一定条件的时候,对偶问题与原问题的解完全等价
  • 对偶问题通常更容易求解

基于这样的特点,拉格朗日对偶经常被用来求解最优化问题,而机器学习的背后都是优化问题。所以,拉格朗日对偶非常适合来求解机器学习问题。应用拉格朗日对偶方法的一个典型例子就是支持向量机算法(SVM)。SVM训练时,求解的原问题是一个凸优化问题,经过拉格朗日对偶变换后,可以将目标函数转化为凸函数。

凸优化

拉格朗日对偶的目标就是将带约束的优化问题转化为不带约束或约束较简单的凸优化问题。所以,了解什么是凸优化是理解拉格朗日对偶的前提。
我们知道,求解一般函数的全局最优值是十分困难的,在机器学习实践中也是如此,算法经常被困在局部最优点动弹不得,无法收敛到全局最优。但是,如果对原问题加以限定,那么问题就会迎刃而解。对于凸优化来说即为:

  • 目标函数是凸函数
  • 优化变量的可行域是一个凸集

我们先来探讨凸集的概念。

凸集

对于 n n n维空间中的点集 C C C来说,如果对集合中的任意两点 x x x y y y,以及实数 0 ≤ θ ≤ 1 0\leq\theta\leq1 0θ1,都有:

θ + ( 1 + θ ) y ∈ C \theta +(1+\theta)y \in C θ+(1+θ)yC

则成该集合为凸集。这个定义看似复杂,直观上很好理解:将集合中的任意两个点连接起来,其直线上的点都在这个集合中。如果将这个点集画出来,那么就会得到一个全凸的几何图形。
相应的,

θ + ( 1 + θ ) y \theta +(1+\theta)y θ+(1+θ)y

称为 x x x y y y的凸组合。
有了凸集的概念,我们就可以知道以下约束的集合空间是凸集。

  1. 仿射子空间。这个空间其实是由所有的等式约束构成的,也就是:

{ x ∈ R : A x = b } \{x\in R:Ax = b\} { xR:Ax=b}

  1. 多面体。这个空间是由所有的不等式约束组成的。

{ x ∈ R : A x ≤ b } \{x\in R:Ax \leq b\} { xR:Axb}

书上给出了证明两个空间为凸集的证明过程,这里不再赘述。
关于凸集,有这样一个性质:多个凸集的交集仍然是凸集。这也证明了,由多个等式或不等式的约束组合成的约束空间仍然是一个凸集。

凸函数

假设一个函数 f ( x ) f(x) f(x),对于任意的实数,都满足如下条件:

f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x +(1-\theta)y)\leq\theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)

则该函数是凸函数。这个定义的几何意义是:函数上的任意两点构成的线段,始终处于函数图像的上方。从几何直观角度来说,就是函数图像是向下凸的。
和凸集类似的,凸函数的非负线性组合是凸函数。

凸优化

如果一个最优化问题的可行域是凸集,并且目标函数是凸函数,那么该问题是凸优化问题。如下述函数就是一个凸优化问题:
m i n i m i z e f ( x ) s u b j e c t   t o . g i ( x ) ≤ 0 , i = 1 , 2 , . . . , m h i ( x ) = 0 , i = 1 , 2 , . . . , p \begin{aligned} &minimize\quad f(x)\\ subject\ to.\quad &g_i(x) \leq 0,i = 1,2,...,m\\ &h_i(x) = 0,i = 1,2,...,p\\ \end{aligned} subject to.minimizef(x)gi(x)0,i=1,2,...,mhi(x)=0,i=1,2,...,p
凸优化问题有一个重要的特征:所求得的局部最优解一定是全局最优解。这极大地简化了问题的求解,同时也解决了梯度下降法困在局部最优点的问题。
然而,我们面对的机器学习问题很多情况下不是凸问题,这就要求我们寻找一种方法,将非凸问题转化为凸问题进而求解。拉格朗日对偶就是这样的方法。

拉格朗日对偶法

我们研究如下的优化问题:
m i n i m i z e f ( x ) s . t . g i ( x ) ≤ 0 , i = 1 , 2 , . . . , m h i ( x ) = 0 , i = 1 , 2 , . . . , p \begin{aligned} &minimize\quad f(x)\\ s.t.\quad &g_i(x) \leq 0,i = 1,2,...,m\\ &h_i(x) = 0,i = 1,2,...,p\\ \end{aligned} s.t.minimiz

  • 22
    点赞
  • 109
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估中心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
拉格朗日对偶是一种优化算,用于解决带有约束条件的优化问题。它的基本思想是将原始问题转化为一个对偶问题,通过求解对偶问题来得到原始问题的最优解。这种方常用于解决线性规划问题。 下面是拉格朗日对偶的算步骤: 1. 建立原始问题 首先需要建立原始问题,它通常包含一个目标函数和一组约束条件。例如: $$\min f(x)$$ $$s.t. \quad g_i(x) \leq 0, i=1,2,...,m$$ $$h_j(x) = 0, j=1,2,...,n$$ 其中,$f(x)$ 是一个需要最小化的目标函数,$g_i(x) \leq 0$ 是不等式约束条件,$h_j(x) = 0$ 是等式约束条件。 2. 建立拉格朗日函数 接下来,需要建立拉格朗日函数,它是原始问题的一个辅助函数。拉格朗日函数的形式如下: $$L(x,\alpha,\beta) = f(x) + \sum_{i=1}^{m}\alpha_ig_i(x) + \sum_{j=1}^{n}\beta_jh_j(x)$$ 其中,$\alpha_i$ 和 $\beta_j$ 是拉格朗日乘子,它们是非负的实数。 3. 建立对偶问题 通过对拉格朗日函数求解最大值,得到对偶问题: $$\max_{\alpha,\beta} g(\alpha,\beta) = \min_{x} L(x,\alpha,\beta)$$ 其中,$g(\alpha,\beta)$ 是对偶函数。 4. 求解对偶问题 通过求解对偶问题得到对偶最优解 $(\alpha^*,\beta^*)$。 5. 求解原始问题 通过对偶最优解,可以求解原始问题的最优解。 需要注意的是,拉格朗日对偶只适用于一类特殊的优化问题,即凸优化问题。在非凸问题中,对偶问题的最优解不一定能够得到原始问题的最优解。 此外,拉格朗日对偶还有一些变形,如增广拉格朗日、交替方向乘子等。这些方都是基于拉格朗日对偶的思想,用于解决不同类型的优化问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值