BZOJ【2982】combination

本文介绍了一种基于中国剩余定理和递归分解的方法来高效计算Lucas数,通过预处理阶乘及其逆元,避免了大数运算中的除法操作,实现了对Lucas数的快速求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lucas 就当板子了
沙雕n==0
Bzoj过了loj无故re。。
Code

#include<cstdio>
#include<iostream>
using namespace std;
const long long mod=10007;
int t;
long long jc[20010];
int n,m;
long long njc[20010];
long long exgcd(long long a,long long b,long long &x,long long &y)
{
	if(b==0)
	{
		x=1,y=0;
		return a;
	}
	long long t=exgcd(b,a%b,y,x);
	y-=a/b*x;
	return t;
}
long long C(int n,int m)
{
	if(m==0||n==m)return 1;
	return jc[n]*njc[m]%mod*njc[n-m]%mod;
}
long long L(int n,int m)
{
	if(n<mod&&m<mod)return C(n,m);
	else return L(n/mod,m/mod)*L(n%mod,m%mod)%mod;
}
int main()
{
	jc[0]=1;
	for(int i=1;i<=10006;i++)
	{
		jc[i]=i*jc[i-1]%mod;
	}
	long long y;
	exgcd(jc[10006],mod,njc[10006],y);
	njc[10006]=(njc[10006]%mod+mod)%mod;
	for(int i=10005;i>=1;i--)
	{
		njc[i]=njc[i+1]*(i+1)%mod;
	}
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&m);
		printf("%lld\n",L(n,m)%mod);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值