这题真心是挺难的!!!至少看solution前是这样的。
题目的n到10的9次方,应该是要给它加个log才行。
坦白说我的第一感觉以为这是一道字符串题。BUT!我字符串学的比较差,也没继续想。
现在给出解法:
首先是最神的dp函数定义:f[i][j]表示——匹配到主串的第i位为止(长的叫主串,短的叫模式串,这个是KMP算法里给出的定义),恰匹配上了模式串的第j位的总可能数。
接下来再给出一个二维数组b[i][j]。假如现在,前i位匹配成功,再加上一个数字,变成了匹配到第j位。对于这一组(i,j),有多少个数字能满足这个性质呢?b[i][j]存储的就是这个数目。
于是,有方程如下。
再说说矩阵加速——把b[i][j]整个倒过来,即转成b[j][i],初值矩阵乘n次b矩阵,就是包含答案的矩阵了。
上代码——
#include <cstdio>
char str[25]; int n, m, mod, next[25], b[25][25], a[25][25];
//b[j][i]表示str的0~i-1位再加上一位后,得到的新串的后缀和str的前缀的最长公共部分的长度变为j。这样的数有多少个
//是的,就是b[j][i],我没写反
inline void KMP() {
next[1] = 0;
int j = next[1];
for(int i = 2; i <= m; i++){
while(j && str[j + 1] != str[i]) j = next[j];
if(str[j + 1] == str[i]) ++j;
next[i] = j;
}
for(int i = 0; i < m; ++i)
for(int j = 0; j <= 9; ++j) {
int t = i;
while(t && str[t + 1] - '0' != j) t = next[t];
if(str[t + 1] - '0' == j) ++t;
if(t != m) b[t][i] = (b[t][i] + 1) % mod;
}
return ;
}
inline void mul(int a[25][25], int b[25][25], int ans[25][25]) {
int tmp[25][25];
for(int i = 0; i < m; ++i)
for(int j = 0; j < m; ++j) {
tmp[i][j] = 0;
for(int k = 0; k < m; ++k)
tmp[i][j] = (tmp[i][j] + a[i][k] * b[k][j]) % mod;
}
for(int i = 0; i < m; ++i)
for(int j = 0; j < m; ++j)
ans[i][j] = tmp[i][j];
return ;
}
inline void test() {
for(int i = 0; i < m; ++i) {
for(int j = 0; j < m; ++j) printf("b[%d][%d]=%d ", j, i, b[i][j]);
printf("\n");
}
return ;
}
int main() {
scanf("%d%d%d", &n, &m, &mod);
scanf("%s", str+1);
KMP();
//test();
for(int i = 0; i < m; ++i) a[i][i] = 1;
while(n) {
if(n & 1) mul(a, b, a);
mul(b, b, b);
n>>= 1;
}
int sum = 0;
for(int i = 0; i < m; ++i)
sum = (sum + a[i][0]) % mod;
printf("%d", sum);
return 0;
}

2979

被折叠的 条评论
为什么被折叠?



