※bzoj1009

这题真心是挺难的!!!至少看solution前是这样的。

题目的n到10的9次方,应该是要给它加个log才行。

坦白说我的第一感觉以为这是一道字符串题。BUT!我字符串学的比较差,也没继续想。

现在给出解法:

首先是最神的dp函数定义:f[i][j]表示——匹配到主串的第i位为止(长的叫主串,短的叫模式串,这个是KMP算法里给出的定义),恰匹配上了模式串的第j位的总可能数。

接下来再给出一个二维数组b[i][j]。假如现在,前i位匹配成功,再加上一个数字,变成了匹配到第j位。对于这一组(i,j),有多少个数字能满足这个性质呢?b[i][j]存储的就是这个数目。

于是,有方程如下。


再说说矩阵加速——把b[i][j]整个倒过来,即转成b[j][i],初值矩阵乘n次b矩阵,就是包含答案的矩阵了。

上代码——

#include <cstdio>
char str[25]; int n, m, mod, next[25], b[25][25], a[25][25];
//b[j][i]表示str的0~i-1位再加上一位后,得到的新串的后缀和str的前缀的最长公共部分的长度变为j。这样的数有多少个 
//是的,就是b[j][i],我没写反
inline void KMP() {
	next[1] = 0;
	int j = next[1];
	for(int i = 2; i <= m; i++){
		while(j && str[j + 1] != str[i]) j = next[j];
		if(str[j + 1] == str[i]) ++j;
		next[i] = j;
	}
	for(int i = 0; i < m; ++i)
		for(int j = 0; j <= 9; ++j) {
			int t = i;
			while(t && str[t + 1] - '0' != j) t = next[t];
			if(str[t + 1] - '0' == j) ++t;
			if(t != m) b[t][i] = (b[t][i] + 1) % mod;
		}
	return ;
}
inline void mul(int a[25][25], int b[25][25], int ans[25][25]) {
	int tmp[25][25];
	for(int i = 0; i < m; ++i)
		for(int j = 0; j < m; ++j) {
			tmp[i][j] = 0;
			for(int k = 0; k < m; ++k)
				tmp[i][j] = (tmp[i][j] + a[i][k] * b[k][j]) % mod;
		}
	for(int i = 0; i < m; ++i)
		for(int j = 0; j < m; ++j)
			ans[i][j] = tmp[i][j];
	return ;
}
inline void test() {
	for(int i = 0; i < m; ++i) {
		for(int j = 0; j < m; ++j) printf("b[%d][%d]=%d  ", j, i, b[i][j]);
		printf("\n");
	}
	return ;
}
int main() {
	scanf("%d%d%d", &n, &m, &mod);
	scanf("%s", str+1);
	KMP();
	
	//test();
	
	for(int i = 0; i < m; ++i) a[i][i] = 1;
	while(n) {
		if(n & 1) mul(a, b, a);
		mul(b, b, b);
		n>>= 1;
	}
	int sum = 0;
	for(int i = 0; i < m; ++i)
		sum = (sum + a[i][0]) % mod;
	printf("%d", sum);
	return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值