提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
KNIME作为数据分析平台,打通数据接口是其中重要的一环。
平时有些客户喜欢问一些数据的接口问题,作为半个SolutionArchitect,这方面自然也是要好好了解一下,有助于评估方案的可行性。
这也是我个人喜欢KNIME的一个原因:KNIME可以帮我快速查看方案的可行性,甚至完成PoC(Proof of Concept)。
KNIMEHUB提供了很多优秀的案例,这里我收集了30个优秀的数据接口案例。通过这些案例的融汇贯通,我们可以轻松的从各种数据源获取数据,然后合并,最后用于自己的分析目的。
这些案例都是很经典的,每个案例都会有至少两种以上的数据接口的融合。
最关键的是这30个案例有很详细的英文讲解,包括讲解思路,节点的选择,workflow的设计等等。
以下案例全部来自KNIME官网,可以去KNIME HUB搜索关键词下载,比如搜索mysql或者ML等。
案例知识点密集
先看一下这30个案例覆盖面有多广,本地数据库,云数据库,都有案例。
还有很多的文件格式,比如下图的所有格式,从经典的CSV,EXCEL,LOG文件到HTTP读取远程文件,RESTAPI获取网页信息,或者JDBC从某些非典型数据库获取数据都有涉猎。
甚至是ePub这种电子书的图片解析都有案例,不可谓不经典。
当然了,多语言融合也是一大需求,你可能想要融合JS,Python,R等语言,以及爬虫。
还有一些在国外很流行的数据接口,包括SharePoint, GCP, Kafka, Azure, Tableau, DataBricks,Amazon ML 等平台,这里面也有经典的案例。
经典个案
案例13:从6种数据源获取数据。不管是经典的SQL类型还是NoSQL类型,都可以,官方也提供了很详细的讲解。
获取的数据当然需要进行分析,这个案例中采用机器学习进行后续处理。算法采用的是经典的随机森林,但是比较贴心的,还做了数据特征,尤其是采用递归法筛选特征。
案例15:多语言生成词云,多语言进行翻译。