匈牙利算法的matlab实现

本文介绍了匈牙利算法,一种解决匹配问题的算法,尤其适用于二维图的最大匹配。文章详细阐述了算法原理,包括矩阵转化、寻找增广路径等步骤,并提供了MATLAB代码实现及测试案例,展示了如何将成本矩阵转化为可行的匹配解决方案。
摘要由CSDN通过智能技术生成

匈牙利算法

  • 算法简介
  • 算法原理
  • 算法实现(附代码)
  • 测试

算法简介

下面摘用百度百科中的解释。
匈牙利算法(Hungarian method)是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是二分图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。

简单来说,匈牙利算法就是为了解决匹配问题的一种算法。
可以设想这样一个问题,有三个工人要共同完成三件任务。每个人只能专注完成一件任务。且工人完成不同任务所需要的时间是不一样的。当然这里可以直接通过枚举的方式来遍历所有的分配方式来进行求解。但当求解的问题的维度变得比较大时,这样处理就显得不太明智了。所以,为了解决这一类问题,匈牙利算法得以提出。

算法原理

算法的输入时一个代价矩阵 c c ,其中 c i j 表示工人i在任务j上的工作时长。

算法总的来说分成几步。

step1

将矩阵 c c 化为每行每列都至少有一个0的矩阵。
例如输入矩阵

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值