Description
设有一个
n*m
方格的棋盘(
1
≤
m,n
≤
100
)。(
30%
)
求出该棋盘中包含多少个正方形、多少个长方形(不包括正方形)。
例如:当
n=2
,
m=3
时
|
|
|
|
|
|
正方形的个数有
8
个;即边长为
1
的正方形有
6
个;
边长为
2
的正方形有
2
个。
长方形的个数有
10
个;
即
2*1
的长方形有
4
个;
|
|
|
|
1*2
的长方形有
3
个;
3*1
的长方形有
2
个;
|
|
|
3*2
的长方形有
1
个。
|
|
|
|
|
|
Input
第一行输入一个整型数T,这个数字为测试数据的个数。从第二行开始会有T组测试数据,每行为两个正整数N和M(1<=n,m<=100)。
Output
与测试数据对应,刚好有T行测试数据,每行包含两个数,分别为正方形的个数与长方形的个数,两个数之前用一个空格隔开,行尾不要有多余的空格。
Sample Input
2 2 3 3 4
Sample Output
8 10 20 40
#include<stdio.h> int main() { int m,n,c; int s,l,a; int T; scanf("%d",&T); for(int i=1;i<=T;i++) { scanf("%d %d",&m,&n); if(m<n) { c=m; m=n; n=c; } s=n*(1+n)*(1+3*m-n)/6;//计算正方形的数目 l=m*n*(m+1)*(n+1)/*此处是计算总矩形的数目*//4-s;//计算长方形的数目 printf("%d %d\n",s,l); } return 0; }