学习来源:日撸 Java 三百行(51-60天,KNN与NB))_闵帆的博客-CSDN博客
基于 M-distance 的推荐
1.所谓 M-distance, 就是根据平均分来计算两个用户 (或项目) 之间的距离.
2.找邻居时不固定个数. 距离小于某个 radius (半径)的都是邻居. 使用 M-distance 时, 这种方式效果更好.
3.使用 leave-one-out 的测试方式, 很高效的算法才能使用这种方式.
过程举例:
目标:预测左图“?”的值。
符号含义:u(用户),m(电影名),num(每一列非零个数),sum(非零元素相加的总和),r(平均值),图中0.3就为半径radius,p(预测值)。
求解过程:根据“?”所在列的平均值r 加上或者减去0.3求出范围3.5-0.3<=r<=3.5+0.3;满足此范围的r有m1,m2,m3,m4,还得同时满足与“?”同行的为非“0”值,故只有m1与m3满足邻居条件,最后将m1和m3相加取平均值为(2+4)/2=3,此值就为预测值p.
完整代码:
package machinelearning.knn;
/**
* Recommendation with M-distance.
* @author Rui Chen 1369097405@qq.com.
*/
import java.io.*;
public class MBR {
/**
* Default rating for 1-5 points.
*/
public static final double DEFAULT_RATING = 3.0;
/**
* The total number of users.
*/
private int numUsers;
/**
* The total number of items.
*/
private int numItems;
/**
* The total number of ratings (non-zero values)
*/
private int numRatings;
/**
* The predictions.
*/
private double[] predictions;
/**
* Compressed rating matrix. User-item-rating triples.
*/
private int[][] compressedRatingMatrix;
/**
* The degree of users (how many item he has rated).
*/
private int[] userDegrees;
/**
* The average rating of the current user.
*/
private double[] userAverageRatings;
/**
* The degree of users (how many item he has rated).
*/
private int[] itemDegrees;
/**
* The average rating of the current item.
*/
private double[] itemAverageRatings;
/**
* The first user start from 0. Let the first user has x ratings, the second
* user will start from x.
*/
private int[] userStartingIndices;
/**
* Number of non-neighbor objects.
*/
private int numNonNeighbors;
/**
* The radius (delta) for determining the neighborhood.
*/
private double radius;
/**
*************************
* Construct the rating matrix.
*
* @param paraRatingFilename
* the rating filename.
* @param paraNumUsers
* number of users
* @param paraNumItems
* number of items
* @param paraNumRatings
* number of ratings
*************************
*/
public MBR(String paraFilename, int paraNumUsers, int paraNumItems, int paraNumRatings) throws Exception {
// Step 1. Initialize these arrays
numItems = paraNumItems;
numUsers = paraNumUsers;
numRatings = paraNumRatings;
userDegrees = new int[numUsers];
userStartingIndices = new int[numUsers + 1];
userAverageRatings = new double[numUsers];
itemDegrees = new int[numItems];
compressedRatingMatrix = new int[numRatings][3];
itemAverageRatings = new double[numItems];
predictions = new double[numRatings];
System.out.println("Reading " + paraFilename);
// Step 2. Read the data file.
File tempFile = new File(paraFilename);
if (!tempFile.exists()) {
System.out.println("File " + paraFilename + " does not exists.");
System.exit(0);
} // Of if
BufferedReader tempBufReader = new BufferedReader(new FileReader(tempFile));
String tempString;
String[] tempStrArray;
int tempIndex = 0;
userStartingIndices[0] = 0;
userStartingIndices[numUsers] = numRatings;
while ((tempString = tempBufReader.readLine()) != null) {
// Each line has three values
tempStrArray = tempString.split(",");
compressedRatingMatrix[tempIndex][0] = Integer.parseInt(tempStrArray[0]);
compressedRatingMatrix[tempIndex][1] = Integer.parseInt(tempStrArray[1]);
compressedRatingMatrix[tempIndex][2] = Integer.parseInt(tempStrArray[2]);
userDegrees[compressedRatingMatrix[tempIndex][0]]++;
itemDegrees[compressedRatingMatrix[tempIndex][1]]++;
if (tempIndex > 0) {
// Starting to read the data of a new user.
if (compressedRatingMatrix[tempIndex][0] != compressedRatingMatrix[tempIndex - 1][0]) {
userStartingIndices[compressedRatingMatrix[tempIndex][0]] = tempIndex;
} // Of if
} // Of if
tempIndex++;
} // Of while
tempBufReader.close();
double[] tempUserTotalScore = new double[numUsers];
double[] tempItemTotalScore = new double[numItems];
for (int i = 0; i < numRatings; i++) {
tempUserTotalScore[compressedRatingMatrix[i][0]] += compressedRatingMatrix[i][2];
tempItemTotalScore[compressedRatingMatrix[i][1]] += compressedRatingMatrix[i][2];
} // Of for i
for (int i = 0; i < numUsers; i++) {
userAverageRatings[i] = tempUserTotalScore[i] / userDegrees[i];
} // Of for i
for (int i = 0; i < numItems; i++) {
itemAverageRatings[i] = tempItemTotalScore[i] / itemDegrees[i];
} // Of for i
}// Of the first constructor
/**
*************************
* Set the radius (delta).
*
* @param paraRadius
* The given radius.
*************************
*/
public void setRadius(double paraRadius) {
if (paraRadius > 0) {
radius = paraRadius;
} else {
radius = 0.1;
} // Of if
}// Of setRadius
/**
*************************
* Leave-one-out prediction. The predicted values are stored in predictions.
*
* @see predictions
*************************
*/
public void leaveOneOutPrediction() {
double tempItemAverageRating;
// Make each line of the code shorter.
int tempUser, tempItem, tempRating;
System.out.println("\r\nLeaveOneOutPrediction for radius " + radius);
numNonNeighbors = 0;
for (int i = 0; i < numRatings; i++) {
tempUser = compressedRatingMatrix[i][0];
tempItem = compressedRatingMatrix[i][1];
tempRating = compressedRatingMatrix[i][2];
// Step 1. Recompute average rating of the current item.
tempItemAverageRating = (itemAverageRatings[tempItem] * itemDegrees[tempItem] - tempRating)
/ (itemDegrees[tempItem] - 1);
// Step 2. Recompute neighbors, at the same time obtain the ratings
// Of neighbors.
int tempNeighbors = 0;
double tempTotal = 0;
int tempComparedItem;
for (int j = userStartingIndices[tempUser]; j < userStartingIndices[tempUser + 1]; j++) {
tempComparedItem = compressedRatingMatrix[j][1];
if (tempItem == tempComparedItem) {
continue;// Ignore itself.
} // Of if
if (Math.abs(tempItemAverageRating - itemAverageRatings[tempComparedItem]) < radius) {
tempTotal += compressedRatingMatrix[j][2];
tempNeighbors++;
} // Of if
} // Of for j
// Step 3. Predict as the average value of neighbors.
if (tempNeighbors > 0) {
predictions[i] = tempTotal / tempNeighbors;
} else {
predictions[i] = DEFAULT_RATING;
numNonNeighbors++;
} // Of if
} // Of for i
}// Of leaveOneOutPrediction
/**
*************************
* Compute the MAE based on the deviation of each leave-one-out.
*
* @author Fan Min
*************************
*/
public double computeMAE() throws Exception {
double tempTotalError = 0;
for (int i = 0; i < predictions.length; i++) {
tempTotalError += Math.abs(predictions[i] - compressedRatingMatrix[i][2]);
} // Of for i
return tempTotalError / predictions.length;
}// Of computeMAE
/**
*************************
* Compute the MAE based on the deviation of each leave-one-out.
*
* @author Fan Min
*************************
*/
public double computeRSME() throws Exception {
double tempTotalError = 0;
for (int i = 0; i < predictions.length; i++) {
tempTotalError += (predictions[i] - compressedRatingMatrix[i][2])
* (predictions[i] - compressedRatingMatrix[i][2]);
} // Of for i
double tempAverage = tempTotalError / predictions.length;
return Math.sqrt(tempAverage);
}// Of computeRSME
/**
*************************
* The entrance of the program.
*
* @param args
* Not used now.
*************************
*/
public static void main(String[] args) {
try {
MBR tempRecommender = new MBR("D:/data/movielens-943u1682m.txt", 943, 1682, 100000);
for (double tempRadius = 0.2; tempRadius < 0.6; tempRadius += 0.1) {
tempRecommender.setRadius(tempRadius);
tempRecommender.leaveOneOutPrediction();
double tempMAE = tempRecommender.computeMAE();
double tempRSME = tempRecommender.computeRSME();
System.out.println("Radius = " + tempRadius + ", MAE = " + tempMAE + ", RSME = " + tempRSME
+ ", numNonNeighbors = " + tempRecommender.numNonNeighbors);
} // Of for tempRadius
} catch (Exception ee) {
System.out.println(ee);
} // Of try
}// Of main
}// Of class MBR