陈序袁
码龄4年
关注
提问 私信
  • 博客:45,104
    45,104
    总访问量
  • 67
    原创
  • 2,048,806
    排名
  • 23
    粉丝

个人简介:分享学习过程

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2020-07-23
博客简介:

.

博客描述:
.
查看详细资料
个人成就
  • 获得23次点赞
  • 内容获得23次评论
  • 获得110次收藏
  • 代码片获得242次分享
创作历程
  • 6篇
    2023年
  • 61篇
    2022年
成就勋章
TA的专栏
  • 多示例学习
    20篇
  • 机器学习
    26篇
  • 深度学习
  • 刷题
    17篇
  • 数学建模
    2篇
  • C语言练习
    10篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【论文阅读】Interventional Bag Multi-Instance Learning On Whole-Slide Pathological Images

多示例学习是解决千兆像素分辨力和幻灯片级别标签的全幻灯片病理图像(whole-slide pathological images , WSIs)的有效工具。以往的主流MIL方法主要关注改进特征提取器以及聚合器。包的上下文先验(contextual prior)可能会影响模型捕捉包与标签之间的虚假相关性(spurious correlations)。该缺陷是限制现有MIL方法性能的混杂因素。本文提出了新的方案:介入式的包多示例学习(Interventional Bag Multi-Instance。
原创
发布博客 2023.11.06 ·
702 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

【论文阅读】Multiple‑instance learning via multiple‑point concept based instance selection

在本文中,我们提出了由一组相似点联合表示的多点概念的概念,然后基于多点概念构建了MIL的迭代实例选择方法。因此,该算法被命名为MILMPC,其与其他MIL算法的主要区别在于通过多点概念而不是单点概念来选择实例。在五个数据集上的实验结果验证了迭代实例选择方法的收敛性,以及由此产生的MIL模型的通用性,因为它在三种不同的相关性评估标准(用于测量候选概念与目标的相关性)下始终表现良好。此外,与其他MIL算法相比,该模型不仅适用于常见的MIL问题,而且更适用于混合问题。
原创
发布博客 2023.06.16 ·
316 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文阅读】Attention-based Deep Multiple Instance Learning

本文提出了一种基于神经网络的置换不变聚合算子,该算子与注意力机制相关。值得注意的是,所提出的基于注意力算子的应用提供了每个实例对包标签贡献的观察。实现表明本方法在基准MIL数据集上有着很好的性能。本文提出的新方法旨在将可解释性纳入MIL方法中,并增加其灵活性。利用包标签的伯努利分布建立MIL模型,并通过优化对数似然函数对模型进行训练。将实例从高维度到低维度的转换;置换不变聚合函数;对包概率的转换;
原创
发布博客 2023.06.05 ·
862 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【深度学习】第六阶段

调试超参数,在不知道哪个超参数最为重要时,建议使用随机值进行探测。两种不同的超参数训练方式,左边的为只关注一个模型的参数对训练的影响,而右边的为同时关注多个模型的影响。若发现有一点的参数效果较好,那么可以在它的附近范围内进行尝试,看是否能找到效果更好的参数点。、神经网络层数、每层的结点数量、 小样本数据集大小、学习率衰减的参数等等。假如输入的是一张图片,那么输出的向量就代表该图片类别的预测概率。在深度学习中,有各种各样的超参数,其中包括:学习率。计算每个节点的占比,得到预测的概率。
原创
发布博客 2023.04.20 ·
522 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】MAMIL

本文提出了基于多注意力的MIL问题求解方法,该方法考虑了包中每个被分析实例的相邻实例。在该方法中,一个注意力模块考虑相邻的实例,使用几个注意力机制来获得实例的不同特征表示,并使用一个注意力模块来联合不同的实例特征表示,提供每个实例和整个包的准确分类。MAMIL以小维度嵌入的形式实现了实例及其邻居的组合表示,以达到简单分类的目的。此外,算法也有效处理了不同类型的实例,使用几个注意力机制模块来实现包中实例的不同特征表示。
原创
发布博客 2023.04.13 ·
489 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

【论文阅读】Robust Multi-Instance Learning with Stable Instances

以往的MIL算法遵循i.i.d假设:训练样本与测试样本都分别来自于同一分布中,而这一假设往往与现实应用中有所出入。研究人员通过计算训练样本与测试样本之间的密度比对训练样本进行加权,以解决分布变化带来的问题。分布的变化发生的原因有许多,诸如:训练数据与测试数据是在不同的时间或不同的地点收集的。当分布发生变化时,由于无法区分因果实例与噪声实例,算法的性能会发生改变。当训练集与测试集分布不同时,噪音实例和标签之间的关联性将不一致。
原创
发布博客 2023.03.08 ·
443 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文写作】课程总结

《论文写作》不仅是本人认为的在本学期收获较大的一门,也是最重要的课程之一。因为作为研究生,论文是必不可少的一部分。论文是就自己研究方向中所得到的成果的一种呈现方式。论文写作不是一件简单的事情,但是只要了解了其中的“规矩”,逐渐熟悉直到熟练,我相信论文写作也不是一件难事。毕竟论文中自己的成果才是重头戏,论文只是内容的载体,是为了各个方向的学者能够看懂你写的内容,能够懂你想表达的意思,能够了解你研究的方向。课程的内容都是干货,没什么口水话。直接了当,跟着每一条规矩来写就完事了。
原创
发布博客 2022.12.13 ·
628 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】MDK与MILDM

提出了一种基于映射的鉴别核函数(Mapping-based Discriminative Kernel,MDK),用于更好地区分正负包。首先,通过同时考虑包空间的局部性、包的辨别性能力以及包的代表性,构建了一个判别和代表包池(Discriminative and Representative bag Pool,DRP)。其中,局部性与代表性用于探索实例之间的关系,而判别性能力在挖掘标签信息的过程中使用。第二,基于DRP将所有的包映射到基于DRP的判别性特征空间中。
原创
发布博客 2022.11.09 ·
498 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文阅读】Scalable Algorithms for Multi-Instance Learning

当前大多数的多示例学习算法只能处理小型或中型规模的数据,为了能够处理大规模数据的多示例学习问题,本文提出了基于局部聚合描述符向量表示的多示例学习算法miVLAD以及基于Fisher向量表示的多示例学习算法miFV。这两个算法通过相应的映射函数将包映射为新的向量,并且保留了重要的包级信息。实验表明,miVLAD与miFV不仅实现了高准确率,而且提高了执行速度。
原创
发布博客 2022.10.29 ·
253 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文阅读】Towards Certified Robustness of Distance Metric Learning

将相似实例拉到一起,将不相似的实例分隔开。本文提出在输入数据集空间中引入对抗间隔(adversarial margin)以提高度量学习算法的泛化性(指机器学习算法对新鲜样本的适应能力)与鲁棒性。对抗间距为实例与离其最近的不同类别的实例之间的距离。它不仅考虑了特征空间中实例间距离,也考虑了metric与之间的关联。为了增强对实例扰动(instance perturbation)的鲁棒性,可以通过增大对抗间隔来实现。最后,利用算法鲁棒性的理论技术证实了增大对抗间隔有利于提高泛化能力。
原创
发布博客 2022.10.25 ·
473 阅读 ·
0 点赞 ·
3 评论 ·
0 收藏

多示例学习回顾

当找到的代表实例是**虚拟**的时候,两个包的相似度就可以通过计算两个代表实例之间的距离来度量。在嵌入方面,Bamic通过计算每个包与k个中心的距离,将包映射为k维的特征向量,每一维都是该包与第k个中心的间距。由于距离能够计算包与包的特征值之间的关系,而包的特征值往往能够代表这个包的类别、性质。在代表实例选择阶段,则依旧沿用了SMDP中的思想来选出实例原型中的代表实例。,也就是代表包集合,与其他包差别大的包。,因此计算每个包与中心的距离就能够体现每个包的所属特征,就能够对该包的向量进行预测。
原创
发布博客 2022.10.16 ·
1202 阅读 ·
2 点赞 ·
1 评论 ·
7 收藏

【力扣刷题】二叉搜索树的最近公共祖先

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。得到两个点的路径后,从路径的开始进行对比,找到最深入的一个祖先。例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。但是既然给了,就应该利用。当然,如果不加上二叉搜索树,就可以利用。的特性来找到最近的公共祖先。
原创
发布博客 2022.10.12 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【力扣刷题】二叉树的后序遍历

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历。这个题的递归算法已掌握,还需要掌握迭代的。145.二叉树的后序遍历。
原创
发布博客 2022.10.11 ·
521 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【力扣刷题】仅执行一次字符串交换能否使两个字符串相等

给你长度相等的两个字符串 s1 和 s2。一次 字符串交换 操作的步骤如下:选出某个字符串中的两个下标(不必不同),并交换这两个下标所对应的字符。一开始以为要用分治法,来递归一下,差点要大改代码。其实只要避免重复交换就可以了,需要一个列表来标记交换过的位置。其实就是像看到的那样,用。如果对 其中一个字符串 执行 最多一次字符串交换 就可以使两个字符串相等,返回 true;否则,返回 false。1790.仅执行一次字符串交换能否使两个字符串相等。一次循环找过去就行了。
原创
发布博客 2022.10.11 ·
140 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【力扣刷题】括号的分数

AB 得 A + B 分,其中 A 和 B 是平衡括号字符串。(A) 得 2 * A 分,其中 A 是平衡括号字符串。
原创
发布博客 2022.10.11 ·
124 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples (MIGraph & miGraph2009)

常规的多示例研究方式通常为很少考虑包内实例之间的关系,因为在实际情况中包内的实例几乎很少出现相互独立的关系。因此,若以non I.ID的方式(利实例之间的关系)来处理实例能够获得更好的性能。本文提出两种算法MIGraph与miGraph。前者显式的将每个包映射到一个无向图中,并设计一个图核来区分正负包;后者通过推导亲和矩阵隐式构造图,并提出一个考虑团信息的高效图核。首先引入常规处理方式与本文的处理方式间的区别:如图所示,每一张图片对应一个包,图片中的每一个小方框对应一个实例。每个包有6个实例,
原创
发布博客 2022.10.05 ·
453 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

【力扣刷题】使括号有效的最少添加

只需要在普通的括号匹配代码上稍作修改即可。由于Python并不支持swtich语句,就使用if-else语句。这个题是每日一题随机抽中的,很明显是考察。问题的相关知识,也就是。
原创
发布博客 2022.10.04 ·
698 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【力扣刷题】二叉树展开为链表

先序遍历是肯定需要的,先序遍历又分为递归与迭代。先使用递归或迭代来求得先序遍历节点集合。
原创
发布博客 2022.10.03 ·
347 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【力扣刷题】打家劫舍

找到它相邻的数值组成最高金额。但其实是有很多漏洞的,无法通过所有测试用例。明显是动态规划类题目,直接入手做很容易碰壁。因为每一步都是有规律的,因此可以通过。利用数组来记录每一步的最高金额。
原创
发布博客 2022.10.02 ·
825 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【力扣刷题】二叉树的右视图

这个算法就是层序遍历的变种,可以参考。只是加上了筛选而已。
原创
发布博客 2022.10.02 ·
178 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多