
【论文阅读】Interventional Bag Multi-Instance Learning On Whole-Slide Pathological Images
多示例学习是解决千兆像素分辨力和幻灯片级别标签的全幻灯片病理图像(whole-slide pathological images , WSIs)的有效工具。以往的主流MIL方法主要关注改进特征提取器以及聚合器。包的上下文先验(contextual prior)可能会影响模型捕捉包与标签之间的虚假相关性(spurious correlations)。该缺陷是限制现有MIL方法性能的混杂因素。本文提出了新的方案:介入式的包多示例学习(Interventional Bag Multi-Instance。










