【速通RAG实战:优化】9.RAG优化宝典:检索精度提升与效果评估全攻略

#王者杯·14天创作挑战营·第1期#

在这里插入图片描述

1、检索精度优化策略

1. 数据预处理优化

  • 目标:减少噪声,提升文本质量。
  • 方法
    • 去除冗余模板(如重复条款)。
    • 消除空白与格式不一致(合并空行、统一缩进)。
    • 删除无关信息(页眉、页脚、版权声明)。
1.分块策略调整
  • 动态分块:根据文本结构(如段落、标题)动态调整块大小。
  • 重叠分块:相邻块间保留10%-20%的重叠内容,避免上下文断裂。
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
    chunk_size=512,
    chunk_overlap=64,
    separators=["\n\n", "\n", ".", " "]
)
2.元数据增强
  • 为每个文本块添加来源、时间戳、作者等元数据,支持检索时过滤。
class Document:
    def __init__(self, content, metadata):
        self.content = content
        self.metadata = metadata  # e.g., {"source": "manual_v1", "date": "2023-01"}

2. 向量化模型优化

  • 模型选型
    • 通用场景:sentence-transformers/all-mpnet-base-v2(高精度)。
    • 多语言场景:paraphrase-multilingual-mpnet-base-v2
    • 轻量级:all-MiniLM-L6-v2(速度优先)。
  • 领域微调
    from sentence_transformers import SentenceTransformer, InputExample, losses
    model = SentenceTransformer('all-mpnet-base-v2')
    train_examples = [InputExample(texts=["医疗术语A", "医疗术语B"])]
    train_loss = losses.MultipleNegativesRankingLoss(model)
    model.fit(train_objectives=[(train_examples, train_loss)], epochs=3)
    

3. 索引与检索优化

  • 混合检索
    • 结合语义检索(向量)与关键词检索(BM25),提升召回率。
    from rank_bm25 import BM25Okapi
    from sklearn.feature_extraction.text import CountVectorizer
    
    corpus = [doc.content for doc in documents]
    bm25 = BM25Okapi(corpus)
    tokenized_query = query.split()
    bm25_scores = bm25.get_scores(tokenized_query)
    
  • 重排序(Reranking)
    • 使用交叉编码器优化Top-K结果。
    from sentence_transformers import CrossEncoder
    reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
    pairs = [[query, doc] for doc in retrieved_docs]
    rerank_scores = reranker.predict(pairs)
    sorted_docs = [doc for _, doc in sorted(zip(rerank_scores, retrieved_docs, reverse=True)]
    

4. 查询优化

  • 核心思想:生成多个语义相关的子查询,覆盖向量空间不同区域。
  • 指令模板
# 输入大模型的指令示例  
你是一个AI语言模型助手。  
生成五个不同版本的用户问题,以便从向量数据库中检索相关文档。  
原始问题:{查询原文}  
效果:提高检索全面性,避免遗漏关键信息。  
1.查询扩展
  • 通过同义词库或LLM生成查询变体。
def expand_query(query):
    synonyms = {"价格": ["售价", "费用"], "优点": ["优势", "好处"]}
    expanded = [query]
    for word in query.split():
        if word in synonyms:
            expanded.extend([query.replace(word, syn) for syn in synonyms[word]])
    return expanded
2.意图识别
  • 使用分类模型区分查询类型(如事实型、开放型)。
from transformers import pipeline
classifier = pipeline("text-classification", model="facebook/bart-large-mnli")
intent = classifier(query, candidate_labels=["事实查询", "建议请求"])

2、RAG效果评估方法

1. 检索阶段评估

  • 离线评估指标
    指标计算方式工具示例
    Recall@KTop-K结果中相关文档占比trec_eval
    MRR首个相关文档排名的倒数均值自定义脚本
    NDCG@K考虑排序的相关性加权评分ir_measures
  • 在线评估
    • 用户点击率(CTR)、答案采纳率。

2. 生成阶段评估

  • 自动指标
    from bert_score import score
    P, R, F1 = score([generated], [reference], lang="zh")
    
  • 人工评估维度
    • 准确性:答案是否包含正确事实。
    • 相关性:是否围绕问题展开。
    • 流畅性:语言是否自然。

3. 端到端评估框架

  • 测试集构建
    test_cases = [
        {
            "question": "特斯拉2023年Q4交付量?",
            "expected_answer": "48.45万辆",
            "docs": ["特斯拉Q4交付48.45万辆..."]
        }
    ]
    
  • 自动化流水线
    def evaluate_rag(test_case):
        retrieved = retriever(test_case["question"])
        generated = llm.generate(retrieved, test_case["question"])
        accuracy = 1 if test_case["expected_answer"] in generated else 0
        return {"accuracy": accuracy, "retrieved_docs": retrieved}
    

3、优化效果对比(示例)

优化策略Recall@5BERTScore人工评分(1-5)
基础RAG0.620.753.2
+混合检索0.780.824.1
+重排序0.810.854.4
+查询扩展0.850.884.6

4、持续改进流程

  1. 监控:实时记录检索与生成指标。
  2. 反馈循环:收集用户对错误答案的反馈,加入训练数据。
  3. 定期迭代:每季度更新嵌入模型与索引。

🔗 下一步行动:尝试将查询扩展与自查询结合,观察召回率提升效果!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值