0.基础
链接1:DR CAN可控性
链接2:DR CAN可观性
链接3:DR CAN李雅普诺夫稳定性
链接3.5:李雅普诺夫稳定性分析方法
简言之,对于系统:
x.=Ax+Bu
y=Cx
能控:M=(B,AB,A^2B,…,A的n-1次方B)满秩
能观:C中没有全为0的列,或:N=(C,CA,…,CA的n-1次方)'满秩
能控性的定义:系统的状态变量可由外输入作用来控制的一种性能。如果在一个有限的时间间隔内,可以用幅值没有限制的输入作用,使偏离系统平衡状态的某个初始状态回复到平衡状态,就称这个初始状态是能控的。
能观性的定义:状态能观性反映系统外部可直接或间接测量的输出y(t)和输入u(t)来确定或识别系统状态的能力
简言之,能控性指能否用u获得x一点,能观性指状态量x能否被观测
注:线性系统状态能观性仅与输出y(t),以及系统矩阵A和输出矩阵C有关,与输入矩阵B、D和输入u(t)无关(参考链接)
1.能控性的定义、判据
A为系统矩阵;B为控制矩阵;C为输出矩阵或观测矩阵;D为直接传递矩阵。——参考自:《现代控制理论》,张嗣瀛,高立群 著,清华大学出版社
2.能观性的定义、判据
注:线性系统状态能观性仅与输出y(t),以及系统矩阵A和输出矩阵C有关,与输入矩阵B、D和输入u(t)无关(参考链接)
A为系统矩阵;B为控制矩阵;C为输出矩阵或观测矩阵;D为直接传递矩阵。——参考自:《现代控制理论》,张嗣瀛,高立群 著,清华大学出版社
3.示例代码:以被动悬架为例
%能控性、能观性判断代码
%李雅普诺夫稳定性分析代码
clc
clear
close all
%% 以被动悬架为例
ms=320;
mw=50;
Ks=22000;
Cs=1500;
Kw=195000;
f0=0.07;
A= [0 1 0 -1;...
-Ks/ms -Cs/ms 0 Cs/ms;...
0 0 0 -1;
Ks/mw Cs/mw Kw/mw -Cs/mw];
B= [0 0 1 0]';
C=[-Ks/ms -Cs/ms 0 Cs/ms;...
1 0 0 0;...
0 0 Kw 0];
%%
%能控性判断,如果CONT满秩则能控
CONT=ctrb(A,B);
rank(CONT)
%能观性判断,如果OBSER满秩则能观
OBSER=obsv(A,C);
rank(OBSER)
%% 李雅普诺夫稳定性分析,第一方法(间接法)
% 判断A的特征值的实部,特征值均具有负实部,则渐近稳定
eig(A)