题目描述:
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对 取模的结果。
输入格式:
输入第一行包含一个整数 ,表示数据组数。
第 到第
行每行包含三个整数
。
的意义如题所述。
输入数据保证
。
输出格式:
输出包含 行,每行有一个数字,表示你所求出的答案对
取模的结果。
思路分析:
- 对于长度为
的序列,可以将其看作是在
个可选数字中做出
次选择,且每次选择都不小于前一次选择。
- 因为需要考虑重复数字的情况,故对于每一个
相当于在数字之间和两端插入空位,共
个位置,利用插板法思路求解组合数为:
。或者直接用“可重复组合”公式:
计算。
- 对所有可能的长度
求和,得到最终的结果:
。
优化公式:
对于 次循环,直接累加组合值肯定会超时,需要对最终结果的求和公式进行推导化简。利用帕斯卡恒等式:
,即:
或
。
令: ,将
进行展开:
当 时,
;
当 时,
;
当 时,
;
……
当 时,
;
可以发现除第 项的
与第
项的
外,其他项累加后都可以相互抵消,最后得到:
,这就是我们最后要的简化表达式。
对于上式,关键就是计算 这个组合的值,再减1对P取模即为答案,关于求组合数,可以看这篇文章说明:【BJWC2008】王之财宝Gate Of Babylon——超详解。
当然,对于本题T只有100,也可以不预处理阶乘逆元数组,直接用费马定理+快速幂公式计算。
AC代码:
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const int maxn = 1000005,P=1000003;
int fact[maxn], invf[maxn];
int pow_mod(int a, int b, int P) {// 快速幂求a^b mod p
int res = 1;
while (b > 0) {
if (b & 1) res = (ll)res * a % P;
a = (ll)a * a % P;
b >>= 1;
}
return res;
}
void init(int P) { //预处理阶乘及其逆元1---费马定理+快速幂
fact[0] = 1;
for (int i = 1; i < P; ++i)
fact[i] = (ll)fact[i - 1] * i % P; //阶乘
invf[P - 1] = pow_mod(fact[P - 1], P - 2, P); //费马定理初始化逆元
for (int i = P - 2; i >= 0; --i)
invf[i] = (ll)invf[i + 1] * (i + 1) % P; //阶乘逆元
}
int comb(int n, int k, int P) {//计算组合数 C(n, k) % P
if (k > n) return 0;
return (ll)fact[n] * ((ll)invf[k] * invf[n - k] % P) % P;
}
int lucas(int n, int k, int P) { //卢卡斯定理计算n,k大于P的情况
if (n < P && k < P) return comb(n, k, P); //小于P直接计算
return (ll)lucas(n / P, k / P, P) * comb(n % P, k % P, P) % P; //大于P情况
}
int main() {
int N,T, L, R;
scanf("%d",&T);
init(P);
while(T--){
scanf("%d%d%d", &N,&L,&R);
printf("%d\n",(lucas(N+R-L+1,N,P)-1+P)%P);//确保结果非负
}
return 0;
}