【组合练习】单调不降序列统计

题目描述:

        给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对 10^{6}+3 取模的结果。

输入格式:      

输入第一行包含一个整数 T,表示数据组数。

第 2 到第 T+1 行每行包含三个整数 N,L,RN,L,R 的意义如题所述。

1\leq N,L,R\leq 10^{9},1\leq T\leq 100, 输入数据保证 L\leq R

输出格式:

输出包含 T 行,每行有一个数字,表示你所求出的答案对 10^{6}+3 取模的结果。

思路分析:

  • 对于长度为 i  ( 1\leq i\leq N) 的序列,可以将其看作是在R-L+1个可选数字中做出 i 次选择,且每次选择都不小于前一次选择。
  • 因为需要考虑重复数字的情况,故对于每一个 i 相当于在数字之间和两端插入空位,共 R-L+1+i-1 个位置,利用插板法思路求解组合数为:\textrm{C}_{R-L+i}^{i} 。或者直接用“可重复组合”公式:\textrm{C}_{n}^{r}=\textrm{C}_{n+r-1}^{r} 计算。
  • 对所有可能的长度 i  ( 1\leq i\leq N) 求和,得到最终的结果:\sum_{i=1}^{n}\textrm{C}_{R-L+i}^{i} 。

优化公式:

        对于N\leq10 ^{9} 次循环,直接累加组合值肯定会超时,需要对最终结果的求和公式进行推导化简。利用帕斯卡恒等式:C_{n}^{k}=C_{n-1}^{k-1}+C_{n-1}^{k} ,即:C_{n+1}^{k}=C_{n}^{k-1}+C_{n}^{k} 或 C_{n}^{k}=C_{n+1}^{k}-C_{n}^{k-1}

令: a_i=C_{R-L+i}^{i} ,将 \sum_{i=1}^{n}\textrm{C}_{R-L+i}^{i}  进行展开:

        当 i=1 时,a_1=C_{R-L+1+1}^{1}-C_{R-L+1}^{1-1}=C_{R-L+2}^{1}-1 ;

        当 i=2 时,a_2=C_{R-L+2+1}^{2}-C_{R-L+2}^{2-1}=C_{R-L+3}^{2}-C_{R-L+2}^{1} ;

        当 i=3 时,a_3=C_{R-L+3+1}^{3}-C_{R-L+3}^{3-1}=C_{R-L+4}^{3}-C_{R-L+3}^{2} ;

        ……

        当 i=N 时,a_{N}=C_{R-L+N+1}^{N}-C_{R-L+N}^{N-1} ;    

可以发现除第 1 项的 -1 与第 N 项的 C_{R-L+N+1}^{N} 外,其他项累加后都可以相互抵消,最后得到:

        a_1+a_2+a_3+...+a_N=C_{R-L+N+1}^{N}-1 ,这就是我们最后要的简化表达式。

对于上式,关键就是计算 C_{R-L+N+1}^{N} 这个组合的值,再减1对P取模即为答案,关于求组合数,可以看这篇文章说明:【BJWC2008】王之财宝Gate Of Babylon——超详解

当然,对于本题T只有100,也可以不预处理阶乘逆元数组,直接用费马定理+快速幂公式计算。 

AC代码:

#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const int maxn = 1000005,P=1000003;
int fact[maxn], invf[maxn];

int pow_mod(int a, int b, int P) {// 快速幂求a^b mod p
	int res = 1;
	while (b > 0) {
		if (b & 1) res = (ll)res * a % P;
		a = (ll)a * a % P;
		b >>= 1;
	}
	return res;
}
void init(int P) { //预处理阶乘及其逆元1---费马定理+快速幂
	fact[0] = 1;
	for (int i = 1; i < P; ++i)
		fact[i] = (ll)fact[i - 1] * i % P; //阶乘
	invf[P - 1] = pow_mod(fact[P - 1], P - 2, P); //费马定理初始化逆元
	for (int i = P - 2; i >= 0; --i)
		invf[i] = (ll)invf[i + 1] * (i + 1) % P; //阶乘逆元
}

int comb(int n, int k, int P) {//计算组合数 C(n, k) % P
	if (k > n) return 0;
	return (ll)fact[n] * ((ll)invf[k] * invf[n - k] % P) % P;
}
int lucas(int n, int k, int P) { //卢卡斯定理计算n,k大于P的情况
	if (n < P && k < P) return comb(n, k, P); //小于P直接计算
	return (ll)lucas(n / P, k / P, P) * comb(n % P, k % P, P) % P; //大于P情况
}

int main() {
	int N,T, L, R;
	scanf("%d",&T);
	init(P); 
	while(T--){
		scanf("%d%d%d", &N,&L,&R);
		printf("%d\n",(lucas(N+R-L+1,N,P)-1+P)%P);//确保结果非负
	} 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值