约瑟夫问题

本文深入探讨了约瑟夫环问题,通过数学公式f[n][k]=(f[n-1][k-1]+m-1)%n展示了如何计算在特定条件下第k个出队的人的位置。介绍了当k很大但m远小于n时的优化方法,提供了C++代码实现,适用于快速求解大规模约瑟夫环问题。

求n个人,每次报m次出队,求第k个出队的人
f[n][k]=(f[n−1][k−1]+m−1)%nf[n][k]=(f[n-1][k-1]+m-1)\%nf[n][k]=(f[n1][k1]+m1)%n
时间复杂度为O(k)O(k)O(k)
kkk很大但是m<<nm<<nm<<n时,可以把多次(m−1)(m-1)(m1)加在一起,一起取模

#include <bits/stdc++.h>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
long long n,m,k,i,s,mod,num;
int T,t,l;
int main()
{
    scanf("%d",&T);
    fo(t,1,T)
    {
        scanf("%lld%lld%lld",&n,&k,&m);
        if (m == 1) {printf("Case #%d: %lld\n",t,k); continue;}
        mod = n - k + 1;
        s = m - 1; s = s % mod;
        while (1)
        {
            num = (mod - s) / (m - 1);
            num = min(num,n-mod);
            s += num * m;
            mod = mod + num;
            s = s % mod;
            if (mod == n) break;
            s += m; mod++;
            s = s % mod;
            if (mod == n) break;
        }
        printf("Case #%d: %lld\n",t,s+1);
    }
    return 0;
}
内容概要:本文介绍了利用Matlab代码实现处理IMU、GPS传感器数据的多种姿态解算算法,重点包括卡尔曼滤波和扩展卡尔曼滤波等技术,旨在提升导航系统的精度与稳定性。通过对传感器数据进行融合与滤波处理,有效解决了惯性导航系统中存在的累积误差问题,提高了动态环境下的姿态估计准确性。文章还提供了完整的算法实现流程和仿真验证,展示了不同滤波方法在实际应用场景中的性能对比。; 适合人群:具备一定Matlab编程基础,从事导航、控制、机器人或自动驾驶等相关领域研究的科研人员及工程技术人员,尤其适合研究生及以上学历或有相关项目经验的研发人员。; 使用场景及目标:①应用于无人机、无人车、机器人等自主导航系统中的姿态估计;②用于教学与科研中对滤波算法的理解与改进;③帮助开发者掌握IMU【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性(Matlab代码实现)/GPS融合算法的设计思路与实现技巧,提升系统鲁棒性与定位精度。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,逐步调试并理解各算法模块的作用,重点关注传感器数据预处理、状态方程构建、噪声协方差调节及滤波结果分析等关键环节,以达到深入掌握姿态解算核心技术的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值