洛谷 P1121 环状最大两段子段和

题目描述

给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大。

输入输出格式

输入格式:

输入文件maxsum2.in的第一行是一个正整数N,表示了序列的长度。

第2行包含N个绝对值不大于10000的整数A[i],描述了这段序列,第一个数和第N个数是相邻的。

输出格式:

输入文件maxsum2.out仅包括1个整数,为最大的两段子段和是多少。

输入输出样例

输入样例#1:
7
2 -4 3 -1 2 -4 3
输出样例#1:
9

说明

【样例说明】

一段为3


只有两种情况:1 一段在中间,一段在两边 2 两端都在中间

所以可以不考虑环,只考虑两端和最大和最小。


#include<iostream>
#include<climits>
#include<cstdio>
using namespace std;
const int N=200005;
int n,sum,tx,tn,a[N],f1[N],g1[N],f2[N],g2[N],mx=INT_MIN,mn=INT_MAX;
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		sum+=a[i];
	}
	f1[0]=INT_MIN,f2[0]=INT_MAX;
	g1[n+1]=INT_MIN,g2[n+1]=INT_MAX;
	for(int i=1;i<=n;i++)
	{
		tx+=a[i],tn+=a[i];
		f1[i]=max(f1[i-1],tx),f2[i]=min(f2[i-1],tn);
		tx=max(tx,0),tn=min(tn,0);
	}
	tx=tn=0;
	for(int i=n;i>=1;i--)
	{
		tx+=a[i],tn+=a[i];
		g1[i]=max(g1[i+1],tx),g2[i]=min(g2[i+1],tn);
		tx=max(tx,0),tn=min(tn,0);
	}
	for(int i=1;i<=n-1;i++)
		mx=max(mx,f1[i]+g1[i+1]),mn=min(mn,f2[i]+g2[i+1]);
	printf("%d\n",max(mx,sum==mn?INT_MIN:sum-mn));
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值