【人脸识别】MVFace:一个优于CosFace和ArcFace的人脸识别损失

论文题目:《Mis-classifified Vector Guided Softmax Loss for Face Recognition》
论文地址:https://arxiv.org/pdf/1912.00833v1.pdf
代码地址:http://www.cbsr.ia.ac.cn/users/xiaobowang/

1.背景

       迄今为止,提出了几种基于margin的softmax损失函数(cosface、sphereface、arcface…)用来增加不同类特征的间隔。虽然它们都取得了重要的成就,但是也存在几个问题:
1、没有考虑到特征挖掘的重要性,而且样本挖掘的时候怎么清晰定义难易样本;
2、设置margin时只考虑从Ground Truth 类出发,未从其他类别考虑判别性;
3、设置margin时不同的类都是固定的间隔m值,不适合很多真实场景的情况;
       MVface可以自适应地重点关注误分类的特征向量,以此指导判别性特征学习。这也是首次将特征margin的优点和特征挖掘的优点集中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值