论文:《Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation》
论文链接:https://arxiv.org/abs/1801.04381
前文链接:MobileNet-v1详解
概述
MobileNet-v2的主要思想就是在v1的基础上引入了线性瓶颈 (Linear Bottleneck)和逆残差 (Inverted Residual)来提高网络的表征能力,同样也是一种轻量级的卷积神经网络。MobileNet-v1的主要思想就是深度可分离卷积,如果对这个方面不太了解的话,可以参考我的另一篇文章,链接已放在文章开头。
1. MobileNet-v1存在的问题
结构问题:MobileNet-v1的结构非常简单,类似于VGGNet,是一个非常复古的直筒结构。这种结构的性价比其实不高,后续一系列的ResNet、DenseNet等结构已经证明通过复用图像特征,使用Concat/Elwise+等操作进行融合,能极大提升网络的性价比。
Depthwise convolution存在的问题:Depthwise convolution确实是大大降低了计算量,Depthwise+Pointwise的结构在性能上也能接近普通卷积。但是在实际应用时我们发现Depthwsie部分的kernel比较容易训废掉,训练完之后发现Depthwise训出来的kerne