【轻量级网络】MobileNet-v2详解

论文:《Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation》
论文链接:https://arxiv.org/abs/1801.04381
前文链接:MobileNet-v1详解

概述

       MobileNet-v2的主要思想就是在v1的基础上引入了线性瓶颈 (Linear Bottleneck)和逆残差 (Inverted Residual)来提高网络的表征能力,同样也是一种轻量级的卷积神经网络。MobileNet-v1的主要思想就是深度可分离卷积,如果对这个方面不太了解的话,可以参考我的另一篇文章,链接已放在文章开头。

1. MobileNet-v1存在的问题

       结构问题:MobileNet-v1的结构非常简单,类似于VGGNet,是一个非常复古的直筒结构。这种结构的性价比其实不高,后续一系列的ResNet、DenseNet等结构已经证明通过复用图像特征,使用Concat/Elwise+等操作进行融合,能极大提升网络的性价比。
       Depthwise convolution存在的问题:Depthwise convolution确实是大大降低了计算量,Depthwise+Pointwise的结构在性能上也能接近普通卷积。但是在实际应用时我们发现Depthwsie部分的kernel比较容易训废掉,训练完之后发现Depthwise训出来的kerne

MobileNetV2是一种轻量级卷积神经网络(Convolutional Neural Network,CNN),旨在在计算资源有限的设备上实现高效的图像分类和目标检测。 MobileNetV2网络结构主要包含以下几个部分: 1. 输入层:接收图像作为输入。 2. 卷积层:使用深度可分离卷积(depthwise separable convolution)替代传统的标准卷积,以减少参数量和计算量。深度可分离卷积分为两个步骤:深度卷积(depthwise convolution)和逐点卷积(pointwise convolution)。 3. 激活函数:常用的激活函数是线性整流函数(ReLU)。 4. 瓶颈结构(Bottleneck):引入瓶颈结构来进一步减少参数量,其中包含1x1卷积和3x3卷积。 5. 下采样(Downsampling):使用步幅卷积或者空间金字塔池化(Spatial Pyramid Pooling)进行下采样操作,以减小特征图的尺寸。 6. 上采样(Upsampling):使用反卷积或者双线性插值进行上采样操作,以增大特征图的尺寸。 7. 快捷连接(Shortcut Connection):引入残差连接(Residual Connection)来提升模型的表达能力和训练效果。 8. 全局平均池化(Global Average Pooling):对特征图进行平均池化操作,将多维特征图转换为一维向量。 9. 全连接层(Fully Connected Layer):将特征向量与标签进行关联,用于分类任务。 MobileNetV2网络结构相对较浅,但通过精心设计的卷积模块和采用的技术,能够在保持较高准确度的同时,显著减少参数量和计算量,适用于移动设备等资源受限的环境。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值