【动手学深度学习】3.矩阵计算及其自动求导含义和简单实现

前言

这几天一直在看B站王木头的视频,仔细阐述了我最初认识神经网络的遇到的但是好像没人在意的问题,讲得非常棒。


矩阵的求导运算

对于机器学习或者是说深度学习来讲,所有的优化模型的求解都是通过求导数来进行的。
先来回忆一下标量的求导
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

标量 y 对 n 维列向量 x=(x1,x2,⋯,xn)T 求导,其结果还是一个 n 维列向量。
标量 y 对 n 维行向量 xT=(x1,x2,⋯,xn) 求导,其结果还是一个 n 维行向量。
形状规则:标量 y 对向量 x 的每个元素求导,然后将各个求导结果按向量 x 的形状排列。
原文地址:https://www.cnblogs.com/yanghh/p/137

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值