常微分方程建模R包ecode(一)——构建常微分方程系统

文章介绍了R包ecode的开发,该包提供了一种简便的方法在R环境中构建和研究常微分方程系统,包括相速矢量场、平衡点和稳定点的解析性质。用户可以方便地进行数值模拟和敏感性分析。文章通过Lotka-Volterra竞争模型展示了如何使用ecode构建和调整模型。
摘要由CSDN通过智能技术生成

常微分方程在诸多研究领域中有着广泛应用,本文希望向大家介绍笔者于近期开发的R包ecode,该包采用简洁易懂的语法帮助大家在R环境中构建常微分方程,并便利地调用R图形接口,研究常微分方程系统的相速矢量场、平衡点、稳定点等解析性质,或进行数值模拟,进行敏感性分析等。

下载与安装

目前,ecode包只有测试版,并已挂载到了github平台上,详见HaoranPopEvo/ecode。安装步骤如下:

  1. 在网页中下载名为"ecode_0.0.0.9000.tar.gz"的压缩包。
  2. 在RStudio中单击“Tools > Install Packages…”,在弹出的对话框中选择Package Archive (.zip; .tar.gz),点击Browsing…按钮,在打开的文件浏览对话框中找到文件"ecode_0.0.0.9000.tar.gz",点击Install按钮,完成安装。

然后将ecode包载入到R环境中:

library(ecode)

构建模型

要构建一个常微分方程系统,首先要利用eode()函数。现考虑构建Lotka–Volterra竞争模型:
d x d t = ( r 1 − a 11 x − a 12 y ) x , ( 1 ) d y d t = ( r 2 − a 21 x − a 22 y ) y , ( 2 ) \frac{dx}{dt}=(r_1-a_{11}x-a_{12}y)x, \quad (1) \\ \frac{dy}{dt}=(r_2-a_{21}x-a_{22}y)y, \quad (2) dtdx=(r1a11xa12y)x,(1)dtdy=(r2a21xa22y)y,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HaoranWu_ZJU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值