目录
机器学习算法/模型分类:
- 监督学习
分类、回归 - 无监督学习
聚类、降维 - 强化学习
0. 相关概念(记录)
- 损失函数、经验风险、结构风险
目标函数 = 结构风险函数 = 经验风险函数 + 正则项 - Hessian矩阵正定
一阶导数信息:梯度
二阶导数信息:Hessian矩阵
正定(positive definite)的直观理解:正定矩阵A使得向量经过 Ax 变换后与变换之前的夹角恒定小于 π 2 {π}\over{2} 2π。
…
1. 从假设函数到目标函数
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习, 最后一般都归结为求一个目标函数的极值,即最优化问题。
首先,要明白下面几