机器学习模型/算法—— 阶段性总结(1)模型框架:假设函数、目标函数和优化算法

机器学习算法/模型分类

  • 监督学习
    分类、回归
  • 无监督学习
    聚类、降维
  • 强化学习

在这里插入图片描述

0. 相关概念(记录)

  • 损失函数、经验风险、结构风险
    目标函数 = 结构风险函数 = 经验风险函数 + 正则项
  • Hessian矩阵正定
    一阶导数信息:梯度
    二阶导数信息:Hessian矩阵
    正定(positive definite)的直观理解:正定矩阵A使得向量经过 Ax 变换后与变换之前的夹角恒定小于 π 2 {π}\over{2} 2π

在这里插入图片描述
在这里插入图片描述

1. 从假设函数到目标函数

对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习, 最后一般都归结为求一个目标函数的极值,即最优化问题

首先,要明白下面几

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值