概要
在实际的数据分析和机器学习任务中,经常会遇到数据不平衡的情况,即不同类别的样本数量差异较大,这会导致模型训练和预测的不准确性。Python的imbalanced-learn库提供了一系列处理不平衡数据的方法和工具,帮助开发者更好地应对这一问题。本文将深入探讨imbalanced-learn库的特性、安装方法、基本功能、高级功能、实际应用场景以及总结,带领大家全面了解这个解决数据不平衡的利器。
安装
安装imbalanced-learn库可以使用pip命令:
pip install imbalanced-learn
安装完成后,就可以开始使用imbalanced-learn库了。
特性
-
提供了多种处理不平衡数据的方法,如过采样、欠采样、合成数据等。
-
兼容scikit-learn库,可以与scikit-learn的模型无缝集成。
-
支持多种评估指标,如准确率、召回率、F1分数等。
基本功能
1. 过采样
过采样是解决数据不平衡的常用方法之一,imbalanced-learn库提供了多种过采样算法,如SMOTE、ADASYN等,示例代码如下:
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from collections import Counter
# 创建不平衡数据集
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
# 打印原始数据集样本分布
print("原始数据集样本分布:", Counter(y))
# 使用SMOTE算法进行过采样
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)
# 打印过采样后数据集样本分布
print("过采样后数据集样本分布:", Counter(y_resampled))
2. 欠采样
除了过采样,imbalanced-learn库还支持欠采样方法,如RandomUnderSampler、NearMiss等,示例代码如下:
from imblearn.under_sampling import RandomUnderSampler
from sklearn.datasets imp