Codeforces Round #305 (Div. 2) D. Mike and Feet (单调栈)

题意:

给你n个数字,求出每1个,2个,3个…n个连续数字所构成的区间里面的最小值之中的最大值(好绕口,解释下样例好了)
10
1 2 3 4 5 4 3 2 1 6
当以3个连续数字作为一个区间的时候,我们可以得到每个区间的最小值是1,2,3,4,3,2,1,1所以输出的第三个数字是4

思路:

利用单调栈,可以求出对于某个数字来说,到左边或到右边第一个比它小的数字的距离,那么如果我们求出这个距离以后,按照他们从大到小的排序,因为要求的值是最大值,那么就可以根据这个这个距离o(n)地更新出答案

错误及反思:

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 210000;
struct poi
{
    int val;
    int l,r;
}arr[maxn];
int n,ans[maxn];
bool cmp(poi a,poi b)
{
    return a.val>b.val;
}
int main()
{
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%d",&arr[i].val);
    stack<int> s;

    for(int i=0;i<n;i++)
    {
        if(s.empty()||arr[s.top()].val<=arr[i].val)
            s.push(i);
        else
        {
            while(!s.empty()&&arr[s.top()].val>arr[i].val)
            {
                int temp=s.top();
                arr[temp].r=i-temp-1;
                s.pop();
            }
            s.push(i);
        }
    }
    while(!s.empty())
    {
        int temp=s.top();
        arr[temp].r=n-temp-1;
        s.pop();
    }



    for(int i=n-1;i>=0;i--)
    {
        if(s.empty()||arr[s.top()].val<=arr[i].val)
            s.push(i);
        else
        {
            while(!s.empty()&&arr[s.top()].val>arr[i].val)
            {
                int temp=s.top();
                arr[temp].l=temp-i-1;
                s.pop();
            }
            s.push(i);
        }
    }

    while(!s.empty())
    {
        int temp=s.top();
        arr[temp].l=temp;
        s.pop();
    }
    sort(arr,arr+n,cmp);

    int now=0;
    for(int i=0;i<n;i++)
    {
        for(int j=now;j<=arr[i].r+arr[i].l;j++)
            ans[now++]=arr[i].val;
    }

    for(int i=0;i<n;i++)
    {
        if(i) printf(" %d",ans[i]);
        else printf("%d",ans[i]);
    }
    puts("");

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值