bzoj2599/洛谷4149 [IOI2011] Race(树分治)

题意:

洛谷的地址
给一棵树,每条边有权。求一条简单路径,权值和等于 K ,且边的数量最小。

思路:

这题bzoj下线了,就去洛谷上A的
其实是一个比较简单的点分治
但是这题和之前的点分治不太一样(这题),这里的要求和之前不一样,我们不能算完重心的情况再去算子树的情况了
我们换一个思路,我们先遍历一颗以重心的儿子为根的子树,然后和一个之前的num(num[i]表示,到重心距离为i时最少经过几个边)数组来更新答案,更新完后,再把这棵子树的东西放进num数组,这样就能很好地排除非法情况(就是两点的简单路径不经过重心)
之后就和正常点分治一样了

错误及反思:

其实上面的都很好想,也不难写。然后就开始十分诡异的RE,TLE了,我在统计每颗子树的时候,把fa写成-1是tle,写成now却是re,然后就找了一下午bug,重写了一次,把vector改成手动模拟,也还是过不了
后来看了看别人的写法,把num数组的清空方式改了一下(之前是每次都memset,后来改成再重新跑一次,把经过的地方都修改回去),就AC了,甚至fa写错了都能AC。。。
可是我们计算一下复杂度,每次都memset的复杂度是 O(logn(n+memset(1e6))) ,这样是tle或re,改了以后是 O(logn(n+n)) ,可是memset很快的啊,因为这个tle实在是搞不懂了。。。re就更神秘了

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
#define fi first
#define se second
using namespace std;
const int N = 200100;
struct EDGE{
    int to,next,val;
}e[N*2];
int first[N],n,tot=0,si[N],maxn[N],num[1000010],k,ans=1e9,v[N][2],en;
bool did[N];

void addedge(int x,int y,int z){
    e[tot].to=y;
    e[tot].val=z;
    e[tot].next=first[x];
    first[x]=tot++;
    e[tot].to=x;
    e[tot].val=z;
    e[tot].next=first[y];
    first[y]=tot++;
}
void dfs_size(int now,int fa){
    si[now]=1;
    maxn[now]=0;
    for(int i=first[now];i!=-1;i=e[i].next)
        if(e[i].to!=fa&&!did[e[i].to]){
            dfs_size(e[i].to,now);
            si[now]+=si[e[i].to];
            maxn[now]=max(maxn[now],si[e[i].to]);
        }
}
void dfs_root(int now,int fa,int& root,int& nu,int t){
    int MA=max(maxn[now],si[t]-si[now]);
    if(MA<nu){
        nu=MA;
        root=now;
    }
    for(int i=first[now];i!=-1;i=e[i].next)
        if(e[i].to!=fa&&!did[e[i].to])
            dfs_root(e[i].to,now,root,nu,t);
}
void dfs2(int now,int fa,int tlen,int dep){
    if(tlen>k) return ;
    for(int i=first[now];i!=-1;i=e[i].next)
        if(e[i].to!=fa&&!did[e[i].to])
            dfs2(e[i].to,now,tlen+e[i].val,dep+1);
    v[en][0]=tlen;
    v[en++][1]=dep;
}

void solve(int now){
    int root,nu=1e9;
    dfs_size(now,-1);
    dfs_root(now,-1,root,nu,now);
    num[0]=0;
    did[root]=true;
    for(int i=first[root];i!=-1;i=e[i].next){
        if(!did[e[i].to]){
            en=0;
            dfs2(e[i].to,root,e[i].val,1);//很神秘的地方,把fa写成-1是tle,写成now却是re,换了num的写法后却都能ac。。。
            for(int j=0;j<en;j++)
                ans=min(ans,v[j][1]+num[k-v[j][0]]);
            for(int j=0;j<en;j++)
                num[v[j][0]]=min(num[v[j][0]],v[j][1]);
        }
    }
    for(int i=first[root];i!=-1;i=e[i].next){
        if(!did[e[i].to]){
            en=0;
            dfs2(e[i].to,root,e[i].val,1);

            for(int j=0;j<en;j++)
                num[v[j][0]]=1e9;
        }
    }
    for(int i=first[root];i!=-1;i=e[i].next)
        if(!did[e[i].to])
            solve(e[i].to);
}
int main(){
    memset(first,-1,sizeof(first));
    scanf("%d%d",&n,&k);
    for(int i=1;i<=k;i++) num[i]=1e9;//这里只写一次,而不是每次都memset
    for(int i=0,u,v,w;i<n-1;i++){
        scanf("%d%d%d",&u,&v,&w);
        addedge(u+1,v+1,w);
    }
    solve(1);
    if(ans==1e9) printf("-1\n");
    else printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值