文章参考:
https://www.cnblogs.com/chengxiao/p/6129630.html
1. 预备知识_堆的性质
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子:
该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]
了解了这些定义。接下来,我们来看看堆排序的基本思想及基本步骤:
2. 堆排序基本思想及步骤
堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了
步骤一:构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
假设给定无序序列结构如下
此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length / 2 - 1 = 5 / 2 - 1 = 1
,也就是下面的6结点),从左至右,从下至上进行调整。
找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
此时,我们就将一个无需序列构造成了一个大顶堆。
步骤二: 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
将堆顶元素9和末尾元素4进行交换
重新调整结构,使其继续满足堆定义
再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.
后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
最后再简单总结下堆排序的基本思路:
a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
3. 代码实现
#include <stdio.h>
/**
* 维护堆的性质
* @param arr 存储堆的数组
* @param len 数组长度
* @param i 待维护节点的下标
*/
void heapify(int arr[], int len, int i)
{
int largest = i;
int lson = i * 2 + 1;
int rson = i * 2 + 2;
if (lson < len && arr[largest] < arr[lson])
largest = lson;
if (rson < len && arr[largest] < arr[rson])
largest = rson;
if (largest != i)
{
swap(&arr[largest], &arr[i]);
heapify(arr, len, largest);
}
}
// 堆排序入口
void heap_sort(int arr[], int len)
{
int i;
// 建堆
for (i = len / 2 - 1; i >= 0; i--)
heapify(arr, len, i);
// 排序
for (i = len - 1; i > 0; i--)
{
swap(&arr[i], &arr[0]);
heapify(arr, i, 0);
}
}
// 交换数组元素位置
void Swap( int *num_a, int *num_b )
{
int temp = *num_b;
*num_b = *num_a;
*num_a = temp;
}
int main(int argc, char const *argv[])
{
test(&heap_sort);
return 0;
}