『数论·同余』同余基础与欧拉费马定理


同余类与剩余系

同余类

在对 m m m取模的意义下, k ‾ \overline{k} k表示 ∀ a \forall a a满足 a   %   m   =   k a\ \%\ m\ =\ k a % m = k的所有正整数集合。则该集合 k ‾ \overline{k} k记为 m m m的一个同余类

剩余系

显然,对于任意模数 m m m,所有的同余类有: 1 ‾ , 2 ‾ , . . . , m − 1 ‾ \overline{1},\overline{2},...,\overline{m-1} 1,2,...,m1

m − 1 m-1 m1个同余类构成 m m m完全剩余系

对于所有和 m m m互质的数 k i k_i ki k i &lt; m k_i&lt;m ki<m,一定有 φ ( m ) φ(m) φ(m)个,分别是 k 1 , k 2 , . . . , k φ ( m ) k_1,k_2,...,k_{φ(m)} k1,k2,...,kφ(m).

m m m简化剩余系,就是集合:{ k 1 ‾ , k 2 ‾ , . . . , k φ ( m ) ‾ \overline{k_1},\overline{k_2},...,\overline{k_{φ(m)}} k1,k2,...,kφ(m)}

简化剩余系的性质

简化剩余系关于模 m m m乘法封闭。对于m的简化剩余系{ k 1 ‾ , k 2 ‾ , . . . , k φ ( m ) ‾ \overline{k_1},\overline{k_2},...,\overline{k_{φ(m)}} k1,k2,...,kφ(m)}来说,

如果 ∀   a ∈ \forall\ a∈  a{ k 1 ‾ , k 2 ‾ , . . . , k φ ( m ) ‾ {\overline{k_1},\overline{k_2},...,\overline{k_{φ(m)}}} k1,k2,...,kφ(m)}, ∀   b ∈ \forall\ b∈  b{ 1 , + ∞ 1,+∞ 1,+}且满足 g c d ( b , m )   =   1 gcd(b,m)\ =\ 1 gcd(b,m) = 1,那么 a ∗ b a*b ab一定在模 m m m意义下的简化剩余系内。

证明

  • 因为 g c d ( a , m )   =   1 , g c d ( b , m )   =   1 gcd(a,m)\ =\ 1,gcd(b,m)\ =\ 1 gcd(a,m) = 1,gcd(b,m) = 1, 所以 a , b a,b a,b m m m都没有公共因子,一定满足 g c d ( a ∗ b , m )   =   1 gcd(a*b,m)\ =\ 1 gcd(ab,m) = 1 ,即 a ∗ b a*b ab一定在 m m m 的简化剩余系内。

欧拉定理

欧拉定理内容

g c d ( a , n )   =   1 gcd(a,n)\ =\ 1 gcd(a,n) = 1, 则 满足: a φ ( n ) ≡   1 ,   ( m o d   n ) a^{φ(n)} \equiv \ 1,\ (mod\ n) aφ(n) 1, (mod n)

欧拉定理证明

注:接下来所有同余式都省略 ( m o d   n ) (mod\ n) (mod n)

n n n的简化剩余系是:{ a 1 ‾ , a 2 ‾ , . . . , a φ ( n ) ‾ \overline{a_1},\overline{a_2},...,\overline{a_{φ(n)}} a1,a2,...,aφ(n)}.

对于 ∀ \forall a i , a j a_i,a_j ai,aj来说,如果要满足 a ∗ a i   ≡   a ∗ a j a*a_i\ \equiv\ a*a_j aai  aaj.通过移项可以得到 a ∗ ( a i − a j )   ≡   0 a*(a_i-a_j)\ \equiv\ 0 a(aiaj)  0,由于 g c d ( a , n )   =   1 gcd(a,n)\ =\ 1 gcd(a,n) = 1,因此一定不满足 a   ≡   0 a\ \equiv\ 0 a  0,可以得到 a i   ≡   a j a_i\ \equiv\ a_j ai  aj,此时则一定满足 a i   =   a j . a_i\ =\ a_j. ai = aj.

因此我们可以得到结论:当 a i   = ̸   a j a_i\ =\not\ a_j ai ≠ aj时, a ∗ a i a*a_i aai a ∗ a j a*a_j aaj属于不同的同余类。

由于简化剩余系的封闭性,集合{ a ∗ a 1 ‾ , a ∗ a 2 ‾ , . . . , a ∗ a φ ( n ) ‾ \overline{a*a_1},\overline{a*a_2},...,\overline{a*a_{φ(n)}} aa1,aa2,...,aaφ(n)}也属于n的简化剩余系,由于先前的结论,当 a i   = ̸   a j a_i\ =\not\ a_j ai ≠ aj时, a ∗ a i a*a_i aai a ∗ a j a*a_j aaj属于不同的同余类,可以得知:

  • 集合{ a ∗ a 1 ‾ , a ∗ a 2 ‾ , . . . , a ∗ a φ ( n ) ‾ \overline{a*a_1},\overline{a*a_2},...,\overline{a*a_{φ(n)}} aa1,aa2,...,aaφ(n)}的数和集合{ a 1 ‾ , a 2 ‾ , . . . , a φ ( n ) ‾ \overline{a_1},\overline{a_2},...,\overline{a_{φ(n)}} a1,a2,...,aφ(n)}.的数可以说是一一对应甚至说是等效的。
  • 因此我们又可以进一步得到: a 1 ∗ a 2 ∗ . . . ∗ a φ ( n )   ≡   ( a ∗ a 1 ) ∗ ( a ∗ a 2 ) ∗ . . . ∗ ( a ∗ a φ ( n ) ) a_1*a_2*...*a_{φ(n)}\ \equiv\ (a*a_1)*(a*a_2)*...*(a*a_{φ(n)}) a1a2...aφ(n)  (aa1)(aa2)...(aaφ(n))

最后我们可以推导出欧拉定理:
a φ ( n ) ∗ a 1 ∗ a 2 ∗ . . . ∗ a φ ( n )   ≡   ( a ∗ a 1 ) ∗ ( a ∗ a 2 ) ∗ . . . ∗ ( a ∗ a φ ( n ) )   ≡   a 1 ∗ a 2 ∗ . . . ∗ a φ ( n ) a^{φ(n)}*a_1*a_2*...*a_{φ(n)}\ \equiv\ (a*a_1)*(a*a_2)*...*(a*a_{φ(n)})\ \equiv\ a_1*a_2*...*a_{φ(n)} aφ(n)a1a2...aφ(n)  (aa1)(aa2)...(aaφ(n))  a1a2...aφ(n)

最后根据先前推导的同余式,可以知道: a φ ( n ) ≡   1 ,   ( m o d   n ) a^{φ(n)} \equiv \ 1,\ (mod\ n) aφ(n) 1, (mod n)

欧拉定理的推论

欧拉定理推论内容

若满足 g c d ( a , n )   =   1 gcd(a,n)\ =\ 1 gcd(a,n) = 1,对于任意正整数b满足: a b   ≡   a b   %   φ ( n ) , ( m o d   n ) a^b\ \equiv\ a^{b\ \%\ φ(n)},(mod\ n) ab  ab % φ(n),(mod n)

欧拉定理推论证明

b   =   k ∗ φ ( n ) + r b\ =\ k*φ(n)+r b = kφ(n)+r,则 r   =   b % φ ( n ) r\ =\ b\%φ(n) r = b%φ(n).

∴ a b   ≡   a k ∗ φ ( n ) + r   ≡   ( a φ ( n ) ) k ∗ a r   ≡   1 ∗ a r   ≡   a r   ≡   a b   %   φ ( n ) ∴a^b\ \equiv\ a^{k*φ(n)+r}\ \equiv\ (a^{φ(n)})^k*a^r\ \equiv\ 1*a^r\ \equiv\ a^r\ \equiv\ a^{b\ \%\ φ(n)} ab  akφ(n)+r  (aφ(n))kar  1ar  ar  ab % φ(n)

欧拉定理推论的应用

若答案需要对质数 p p p取模,尤其是算较大乘方时,可以将底数对 p p p取模,将质数对 φ ( p ) φ(p) φ(p)取模,缩小计算范围。

a , n a,n a,n不一定互质时,也满足: a b   ≡   a b   %   φ ( n ) + φ ( n ) , ( m o d   n ) a^b\ \equiv\ a^{b\ \%\ φ(n)+φ(n)},(mod\ n) ab  ab % φ(n)+φ(n),(mod n)


费马小定理

费马小定理内容

p p p是质数,则对于任意整数 a a a满足: a p   ≡   a , ( m o d   p ) a^p\ \equiv\ a,(mod\ p) ap  a,(mod p)

费马小定理证明

对于欧拉定理:

  • 若满足 g c d ( a , n )   =   1 gcd(a,n)\ =\ 1 gcd(a,n) = 1,对于任意正整数b满足: a b   ≡   a b   %   φ ( n ) , ( m o d   n ) a^b\ \equiv\ a^{b\ \%\ φ(n)},(mod\ n) ab  ab % φ(n),(mod n)

我们知道,任意质数 p p p φ ( p )   =   p − 1 φ(p)\ =\ p-1 φ(p) = p1,套进欧拉定理就是: a p − 1   ≡   1 ( m o d   n ) a^{p-1}\ \equiv\ 1(mod\ n) ap1  1(mod n).

两边同时乘上 a a a,就可以得到: a p   ≡   a , ( m o d   p ) a^p\ \equiv\ a,(mod\ p) ap  a,(mod p)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值