初等数论--同余--欧拉函数、欧拉定理、费马小定理

本文介绍了初等数论中的重要概念,包括同余类、既约同余类、欧拉函数、完全剩余系和既约剩余系,并详细讲解了欧拉定理和费马小定理的证明。通过一系列的小定理,逐步推导出这两个关键定理,旨在帮助初学者理解并加深记忆。
摘要由CSDN通过智能技术生成

博主是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:初等数论,方便检索。

欧拉函数本身,其实就是一个简单描述与元素互素个数的函数,但是它涉及、以及由它推出的定理(欧拉定理、费马小定理)很重要。我会从一些小概念、小定理推到欧拉定理、费马小定理等比较难的定理。

概念

同余类,既约同余类

同 余 类 : m ∈ N + , ∀ i ∈ Z , 记 : [ i ] = 同余类:m\in N^{+},{\forall}i \in Z,记: [i]= mN+,iZ,:[i]= { x : x ∈ Z , x ≡ i ( m o d m ) x:x\in Z,x\equiv i(mod m) x:xZ,xi(modm) }
既 约 同 余 类 : ( i , m ) = 1 + 同 余 类 定 义 既约同余类:(i,m)=1+同余类定义 (i,m)=1+
如 : 整 数 6 的 完 全 剩 余 系 : [ 0 ] , [ 1 ] , [ 2 ] , [ 3 ] , [ 4 ] , [ 5 ] ; 既 约 剩 余 系 : [ 1 ] , [ 5 ] 如:整数6的完全剩余系:[0],[1],[2],[3],[4],[5];既约剩余系:[1],[5] 6[0],[1],[2],[3],[4],[5];[1],[5]

欧拉函数

小 于 m , 且 与 m 互 素 的 整 数 个 数 , 写 作 φ ( m ) 小于m,且与m互素的整数个数,写作\varphi(m) mmφ(m)

完全剩余系,既约剩余系

完 全 剩 余 系 : m 个 整 数 a 1 , a 2 , a 3 … a m , 整 数 模 m 不 同 余 完全剩余系:m个整数a_1,a_2,a_3…a_m,整数模m不同余 ma1,a2,a3am,m
既 约 剩 余 系 : φ ( m ) 个 整 数 b 1 , b 2 , … b φ ( m ) 既约剩余系:\varphi(m)个整数b_1,b_2,…b_\varphi(m) φ(m)b1,b2,bφ(m)
如 : 整 数 6 的 完 全 剩 余 系 : { 0 , 1 , 2 , 3 , 4 , 5 } ; 既 约 剩 余 系 { 1 , 5 } 如:整数6的完全剩余系:\{0,1,2,3,4,5\};既约剩余系\{1,5\} 6{ 0,1,2,3,4,5};{ 1,5}

关于完全剩余系、既约剩余系一些比较简单的定理

  • 设 m ∈ N + , a 、 b ∈ Z , ( a , m ) = 1 , 若 x 遍 历 m 的 一 个 完 全 剩 余 系 , 则 a x + b 遍 历 m 的 一 个 完 全 剩 余 系 。 设m\in N^+,a、b\in Z,(a,m)=1,若x遍历m的一个完全剩余系,则ax+b遍历m的一个完全剩余系。 mN+,abZ,(a,m)=1,xmax+bm

证 明 : 若 x 遍 历 m 的 一 个 完 全 剩 余 系 , 则 x = { a 0 , a 1 , a 2 , … a m − 1 } 且 ∀ a i , a j 有 a i 和 a j 模 m 不 同 余 , 有 a x + b = { a a 0 + b , a a 1 + b , … a a m − 1 + b } , 我 们 只 需 要 证 明 集 合 a x + b 中 每 个 整 数 模 m 不 同 余 。 反 证 法 : 假 设 存 在 两 个 整 数 a i , a j 使 得 a a i + b ≡ a a j + b ( m o d m ) , 那 么 a ( a i − a j ) ≡ 0 ( m o d m ) → m ∣ a ( a i − a j ) 又 因 为 ( a , m ) = 1 , 所 以 m ∣ a i − a j , 即 a i 与 a j 模 m 同 余 , 产 生 矛 盾 , 证 毕 。 证明:若x遍历m的一个完全剩余系,则x=\{a_0,a_1,a_2,…a_{m-1}\}且{\forall}a_i,a_j有a_i和a_j模m不同余,\\ 有ax+b=\{aa_0+b,aa_1+b,…aa_{m-1}+b\},我们只需要证明集合ax+b中每个整数模m不同余。\\ 反证法:假设存在两个整数a_i,a_j使得aa_i+b\equiv aa_j+b(mod m),\\ 那么a(a_i-a_j)\equiv 0(mod m)\rightarrow m\mid a(a_i-a_j)\\ 又因为(a,m)=1,所以m\mid a_i-a_j,即a_i与a_j模m同余,产生矛盾,证毕。 xmx={ a0,a1,a2,am1}ai,ajaiajm,ax+b={ aa0+b,aa1+b,aam1+b},ax+bmai,aj使aai+baaj+b(modm),a(aiaj)0(modm)ma(aiaj)(a,m)=1,maiaj,aiajm

  • 设 m 1 , m 2 是 两 个 互 素 正 整 数 , x 1 , x 2 分 别 遍 历 m 1 , m 2 的 完 全 剩 余 系 , 则 m 2 x 1 + m 1 x 2 遍 历 模 m 1 , m 2 的 完 全 剩 余 系 。 设m_1,m_2是两个互素正整数,x_1,x_2分别遍历m_1,m_2的完全剩余系,则m_2x_1+m_1x_2遍历模m_1,m_2的完全剩余系。 m1,m2x1,x2m1,m2m2x1+m1x2m1,m2

证 明 : x 1 , x 2 分 别 遍 历 m 1 , m 2 的 完 全 剩 余 系 , 则 x 1 = { a 0 , a 1 , … a m 1 − 1 } , x 2 = { b 0 , b 1 , … … , b m 2 − 1 } , x 1 中 有 m 1 个 元 素 , x 2 中 有 m 2 个 元 素 , m 2 x 1 + m 1 x 2 中 有 m 1 m 2 个 元 素 , 现 在 只 需 证 这 m 1 m 2 个 元 素 彼 此 模 m 1 m 2 不 同 余 。 证明:x_1,x_2分别遍历m_1,m_2的完全剩余系,则x_1=\{a_0,a_1,…a_{m_1-1}\},x_2=\{b_0,b_1,……,b_{m_2-1}\},x_1中有m_1个元素,x_2中有m_2个元素,m_2x_1+m_1x_2中有m_1m_2个元素,现在只需证这m_1m_2个元素彼此模m_1m_2不同余。 x1,x2m1,m2x1={ a0,a</

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值