实战:万字小结MySQL慢原因分析

mysql查询为什么会慢,关于这个问题,在实际开发经常会遇到,而面试中,也是个高频题。

遇到这种问题,我们一般也会想到是因为索引。

那除开索引之外,还有哪些因素会导致数据库查询变慢呢?

有哪些操作,可以提升mysql的查询能力呢?

今天这篇文章,我们就来聊聊会导致数据库查询变慢的场景有哪些,并给出原因和解决方案。

数据库查询流程

我们先来看下,一条查询语句下来,会经历哪些流程。

实战:搞懂SQL执行流程、SQL执行计划解读和SQL优化_如何看sql执行计划,如何判断优或略?-CSDN博客

比如我们有一张数据库表

CREATE TABLE `user` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
  `name` varchar(100) NOT NULL DEFAULT '' COMMENT '名字',
  `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
  `gender` int(8) NOT NULL DEFAULT '0' COMMENT '性别',
  PRIMARY KEY (`id`),
  KEY `idx_age` (`age`),
  KEY `idx_gender` (`gender`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

我们平常写的应用代码(go或C++之类的),这时候就叫客户端了。

客户端底层会带着账号密码,尝试向mysql建立一条TCP长链接。

mysql的连接管理模块会对这条连接进行管理。

建立连接后,客户端执行一条查询sql语句。比如:

select * from user where gender = 1 and age = 100;

客户端会将sql语句通过网络连接给mysql。

mysql收到sql语句后,会在分析器中先判断下SQL语句有没有语法错误,比如select,如果少打一个l,写成slect,则会报错You have an error in your SQL syntax;。这个报错对于我这样的手残党来说可以说是很熟悉了。

接下来是优化器,在这里会根据一定的规则选择该用什么索引

之后,才是通过执行器去调用存储引擎的接口函数。

图片

Mysql架构

存储引擎类似于一个个组件,它们才是mysql真正获取一行行数据并返回数据的地方,存储引擎是可以替换更改的,既可以用不支持事务的MyISAM,也可以替换成支持事务的Innodb。这个可以在建表的时候指定。比如

CREATE TABLE `user` (
  ...
) ENGINE=InnoDB;

现在最常用的是InnoDB

我们就重点说这个。

InnoDB中,因为直接操作磁盘会比较慢,所以加了一层内存提提速,叫buffer pool,这里面,放了很多内存页,每一页16KB,有些内存页放的是数据库表里看到的那种一行行的数据,有些则是放的索引信息。

图片

bufferPool与磁盘

查询SQL到了InnoDB中。会根据前面优化器里计算得到的索引,去查询相应的索引页,如果不在buffer pool里则从磁盘里加载索引页。再通过索引页加速查询,得到数据页的具体位置。如果这些数据页不在buffer pool中,则从磁盘里加载进来。

这样我们就得到了我们想要的一行行数据。

图片

索引页与磁盘页的关系

最后将得到的数据结果返回给客户端。

show profile慢查询分析

如果上面的流程比较慢的话,我们可以通过开启profiling看到流程慢在哪。

show profile语句已经弃用,并将在以后版本中移除,建议使用 Performance Schema
Performance Schema文档:MySQL :: MySQL 5.7 Reference Manual :: 25.19.1 Query Profiling Using Performance Schema

但是Query Profiler却可以定位出一条SQL语句执行的各种资源消耗情况,比如CPU,IO等,以及该SQL执行所耗费的时间等。

show profile基本语法:
  • 查看是否开启:show variables like "%pro%";
  • 开启:set profiling = 1
  • 查看SQL执行时间:show profiles;
  • 查看记录中第一条SQL详细时间:show profile for query 1;
  • SHOW PROFILE [type [, type] ... ]
        [FOR QUERY n]
        [LIMIT row_count [OFFSET offset]]
    
    type: {
        ALL                显示所有信息
      | BLOCK IO           显示块输入和输出操作的数量
      | CONTEXT SWITCHES   显示自愿上下文切换和非自愿上下文切换的数量
      | CPU                显示用户和系统的CPU使用时间
      | IPC                显示已发送和已接收消息(messages)的数量
      | MEMORY             -- 尚未生效
      | PAGE FAULTS        显示主要和次要页面错误的数量
      | SOURCE             显示源代码中函数名称以及该函数所在文件的名称和行号
      | SWAPS              显示SWAP数量
    }
    

mysql> set profiling=ON;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> show variables like 'profiling';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| profiling     | ON    |
+---------------+-------+
1 row in set (0.00 sec)

然后正常执行sql语句。

这些SQL语句的执行时间都会被记录下来,此时你想查看有哪些语句被记录下来了,可以执行 show profiles;

mysql> show profiles;
+----------+------------+---------------------------------------------------+
| Query_ID | Duration   | Query                                             |
+----------+------------+---------------------------------------------------+
|        1 | 0.06811025 | select * from user where age>=60                  |
|        2 | 0.00151375 | select * from user where gender = 2 and age = 80  |
|        3 | 0.00230425 | select * from user where gender = 2 and age = 60  |
|        4 | 0.00070400 | select * from user where gender = 2 and age = 100 |
|        5 | 0.07797650 | select * from user where age!=60                  |
+----------+------------+---------------------------------------------------+
5 rows in set, 1 warning (0.00 sec)

关注下上面的query_id,比如select * from user where age>=60对应的query_id是1,如果你想查看这条SQL语句的具体耗时,那么可以执行以下的命令。

mysql> show profile for query 1;
+----------------------+----------+
| Status               | Duration |
+----------------------+----------+
| starting             | 0.000074 |
| checking permissions | 0.000010 |
| Opening tables       | 0.000034 |
| init                 | 0.000032 |
| System lock          | 0.000027 |
| optimizing           | 0.000020 |
| statistics           | 0.000058 |
| preparing            | 0.000018 |
| executing            | 0.000013 |
| Sending data         | 0.067701 |
| end                  | 0.000021 |
| query end            | 0.000015 |
| closing tables       | 0.000014 |
| freeing items        | 0.000047 |
| cleaning up          | 0.000027 |
+----------------------+----------+
15 rows in set, 1 warning (0.00 sec)

通过上面的各个项,大家就可以看到具体耗时在哪。比如从上面可以看出Sending data的耗时最大,这个是指执行器开始查询数据并将数据发送给客户端的耗时,因为我的这张表符合条件的数据有好几万条,所以这块耗时最大,也符合预期。

一般情况下,我们开发过程中,耗时大部分时候都在Sending data阶段,而这一阶段里如果慢的话,最容易想到的还是索引相关的原因。

show profile返回的行和列

执行一个show profile all for query 3;命令显示的结果集。我们根据行和列分别来分析一个每个字段的含义。

列字段的含义:

+---------------------+--------------+------+-----+----------+-------+
| Field               | Type         | Null | Key | Default  | Extra |
+---------------------+--------------+------+-----+----------+-------+
| QUERY_ID            | int(20)      | NO   |     | 0        |       | # 语句ID
| STATE               | varchar(30)  | NO   |     |          |       | # 状态
| DURATION            | decimal(9,6) | NO   |     | 0.000000 |       | # 持续时间,单位s
| CPU_USER            | decimal(9,6) | YES  |     | NULL     |       | # 用户态CPU时间,单位s
| CPU_SYSTEM          | decimal(9,6) | YES  |     | NULL     |       | # 系统态CPU时间,单位s
| CONTEXT_VOLUNTARY   | int(20)      | YES  |     | NULL     |       | # 自愿上下文切换次数
| CONTEXT_INVOLUNTARY | int(20)      | YES  |     | NULL     |       | # 非自愿上下文切换次数
| BLOCK_OPS_IN        | int(20)      | YES  |     | NULL     |       | # 块输入次数
| BLOCK_OPS_OUT       | int(20)      | YES  |     | NULL     |       | # 块输出次数
| MESSAGES_SENT       | int(20)      | YES  |     | NULL     |       | # 发送的消息数量
| MESSAGES_RECEIVED   | int(20)      | YES  |     | NULL     |       | # 接收的消息数量
| PAGE_FAULTS_MAJOR   | int(20)      | YES  |     | NULL     |       | # 主要页面错误数量
| PAGE_FAULTS_MINOR   | int(20)      | YES  |     | NULL     |       | # 次要页面错误数量
| SWAPS               | int(20)      | YES  |     | NULL     |       | # 交换次数
| SOURCE_FUNCTION     | varchar(30)  | YES  |     | NULL     |       | # 源代码函数
| SOURCE_FILE         | varchar(20)  | YES  |     | NULL     |       | # 源代码文件
| SOURCE_LINE         | int(20)      | YES  |     | NULL     |       | # 源代码行数
+---------------------+--------------+------+-----+----------+-------+

行字段含义


* Sending data (最重要的一个过程★★★★★)
  线程正在读取和处理一条SELECT语句的行,并且将数据发送至客户端。由于在此期间会执行大量   的磁盘访问(读操作),
  这个状态在一个指定查询的生命周期中经常是耗时最长的。
  这个字段才是SQL真正运行采集+相应数据的时间,而非executing;
  
  --以下按照首字母顺序依次排序
  
* After create
  这个状态当线程创建一个表(包括内部临时表)时,在这个建表功能结束时出现。即使某些错误导致建表失败,也会使用这个状态。

* Analyzing
  当计算MyISAM表索引分布时。(比如进行ANALYZE TABLE时)

* checking permissions
  这个线程检查服务器是否有具有执行该语句的所需权限。

* Checking table
  线程正在执行表检查操作。

* cleaning up
  线程处理一个命令,并正准备释放内存和重置某些状态变量。

* closing tables
  线程正在将变更的表中的数据刷新到磁盘上并正在关闭使用过的表。这应该是一个快速的操作。如果不是这样的话
  则应该检查硬盘空间是否已满或者硬盘IO是否达到瓶颈。 

* converting HEAP to MyISAM
  线程将一个内部临时表转换为磁盘上的MyISAM表。

* copy to tmp table 
  线程正在处理一个ALTER TABLE语句。这个状态发生在新的表结构已经创建之后,但是在数据被复制进入之前。

* Copying to group table
  如果一个语句有不同的ORDER BY和GROUP BY条件,数据会被复制到一个临时表中并且按组排序。

* Copying to tmp table
  线程将数据写入内存中的临时表。  正在创建临时表以存放部分查询结果

* Copying to tmp table on disk
  线程正在将数据写入磁盘中的临时表。临时表的结果集过大。所以线程将临时表由基于内存模式改为基于磁盘模式,以节省内存。
  但是这个过程会异常的缓慢!!

* Creating index
  线程正在对一个MyISAM表执行ALTER TABLE ... ENABLE KEYS语句。

* Creating sort index
  线程正在使用内部临时表处理一个SELECT 操作。

* creating table
  线程正在创建一个表,包括创建临时表。

* Creating tmp table
  线程正在创建一个临时表在内存或者磁盘上。
  如果这个表创建在内存上但是之后被转换到磁盘上,这个状态在运行Copying to tmp table on disk 的时候保持。

* deleting from main table
  线程正在执行多表删除的第一部分,只从第一个表中删除。并且保存列和偏移量用来从其他(参考)表删除。

* deleting from reference tables
  线程正在执行多表删除的第二部分,并从其他表中删除匹配的行。

* discard_or_import_tablespace
  线程正在执行ALTER TABLE ... DISCARD TABLESPACE 或 ALTER TABLE ... IMPORT TABLESPACE语句。

* end
  这个状态出现在结束时,但是在对ALTER TABLE, CREATE VIEW, DELETE, INSERT, SELECT,   或者 UPDATE 语句进行清理之前。

* executing
  该线程已开始执行一条语句。

* Execution of init_command
  线程正在执行处于init_command系统变量的值中的语句。

* freeing items
* 线程已经执行了命令。在这个状态中涉及的查询缓存可以得到一些释放。这个状态通常后面跟随cleaning up状态。

* Flushing tables
  线程正在执行FLUSH TABLES 并且等待所有线程关闭他们的表。

* FULLTEXT initialization
  服务器正在准备进行自然语言全文检索。

* init
  这个状态出现在线程初始化ALTER TABLE, DELETE, INSERT, SELECT, 或 UPDATE语句之前。
  服务器在这种状态下进行的操作,包括:刷新全日志、Innodb日志,和一些查询缓存清理操作。

* Killed
  程序对线程发送了KILL语句,并且它应该放弃下一次对KILL标记的检查。
  这个标记在每一个MySQL的主要循环中被检查,但在某些情况下,它可能需要令线程在很短的时间内死亡。
  如果这个线程被其他线程锁住了,这个KILL操作会在其他线程释放锁的瞬时执行。


* logging slow query
  这个线程正在将语句写入慢查询日志。

* NULL
  没有操作的状态。

* login
  线程连接的初始状态。直到客户端已经成功验证。

* manage keys
  服务器启用或禁用表索引。

* Opening tables, Opening table
  线程正试图打开一张表

* optimizing
  服务器执行查询的初步优化。

* preparing
 在查询优化过程中出现这个状态。

* Purging old relay logs
  线程正在移除不必要的中继日志文件。

* query end
  这个状态出现在处理一个查询之后,但是在freeing items状态之前。

* Reading from net
  服务器正在从网络阅读数据包。

* Removing duplicates
  查询正在使用SELECT DISTINCT,这种情况下MySQL不能在早期阶段优化掉一些distinct操作。
  因此,MySQL需要一个额外的阶段,在将结果发送到客户端之前删除所有重复的行。

* removing tmp table
  线程正在移除一个内置临时表,在执行一条SELECT语句之后。 如果没有临时表产生,那么这个状态不被使用。

* rename
* 线程正在重命名一张表。

* rename result table
  线程正在处理ALTER TABLE语句,创建新的表,并且重命名它来代替原有的表。

* Reopen tables
  线程获得了表锁,但是在取得表锁之后才发现该表的底层结构已经发生了变化。线程释放这个锁,关闭表,并试图重新打开该表。

* Repair by sorting
  修复代码正在使用一个分类来创建索引。

* Repair done
  线程完成一个多线程的MyISAM表的修复。

* Repair with keycache
  修复代码正在通过索引缓存一个接一个地使用创建索引。这比通过分类修复要慢很多。

* Rolling back
  线程正在回滚一个事务

* Searching rows for update
  线程正在进行第一阶段,在更新前寻找所有匹配的行。如果update正在更改用于查找相关行的索引,则必须这么做。

* setup
  线程正开始进行一个ALTER TABLE操作。

* Sorting for group
  线程正在执行一个由GROUP BY指定的排序。

* Sorting for order
  线程正在执行一个由ORDER BY指定的排序。

* Sorting index
  线程正在对索引页进行排序,为了对MyISAM表进行操作时获得更优的性能。

* Sorting result
 对于一个SELECT语句,这与创建排序索引相似,但是是对非临时表。

* statistics
  服务器计算统计去规划一个查询。如果一个线程长时间处于这个状态,这个服务器的磁盘可能在执行其他工作。

* System lock
 这个线程正在请求或者等待一个内部的或外部的系统表锁。如果这个状态是由于外部锁的请求产生的,并且你没有使用多个正在访问相同的表的mysql服务器
 
* Waiting for table level lock
  系统锁定后的下一个线程状态。线程已获得外部锁并且将请求内部表锁。

* Updating
  线程寻找更新匹配的行并进行更新。

* updating main table
  线程正在执行多表更新的第一部分,只从第一个表中更新。并且保存列和偏移量用来从其他(参考)表更新。

* updating reference tables
  线程正在执行多表更新的第二部分,并从其他表中更新匹配的行。

* User lock
  线程正在请求或等待一个GET_LOCK()调用所要求的咨询锁。对于SHOW PROFILE,这个状态意味这线程正在请求锁。(而非等待)

* User sleep
  线程调用了一个SLEEP()。

* Waiting for commit lock
  一个显式或隐式语句在提交时等待释放读锁

* Waiting for global read lock
  等待全局读锁。

* Waiting for release of readlock
  等待释放读锁。

* Waiting for tables, Waiting for table, Waiting for table flush
  线程获得一个通知,底层表结构已经发生变化,它需要重新打开表来获取新的结构。然而,重新打开表,它必须等到所有其他线程关闭这个有问题的表。
  这个通知产生通常因为另一个线程对问题表执行了FLUSH TABLES或者以下语句之一:
  FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

* Waiting for lock_type lock
  等待各个种类的表锁。

* Waiting on cond
 一个普通的状态,线程正在等待一个条件为真。没有特定的状态信息可用。

* Writing to net
  服务器正在写一个网络数据包。
SQL执行过程中可能导致时间慢的原因

1. Sending data (最重要的一个过程★★★★★)
  线程正在读取和处理一条SELECT语句的行,并且将数据发送至客户端。由于在此期间会执行大量
  的磁盘访问(读操作),这个状态在一个指定查询的生命周期中经常是耗时最长的。
  
  对于一个普通查询来说,这个参数过大可分为两种情况
  1. 第一种是SQL本身,比如没有建立正确的索引,索引失效等等情况,这种数据体现在CPU_user 和CPU_sysyem字段 时间过长;
  2. 第二种是相应数据量过大,导致CPU调度时上下文频繁切换。这种数据体现在CONTEXT_INVOLUNTARY和CONTEXT_VOLUNTARY字段 时间过长;
     像:外网使用Navicat连接到远程数据库中。查询一个普通的SQL,在本地MySQL执行速度很快,但是使用远程服务器的MySQL就异常的缓慢。
  这时若查询profile详情,就会发现大量相应数据传输IO导致频繁的上下文切换消耗了大量的时间。
 
2. converting HEAP to MyISAM
   原译指的是:线程将一个内部临时表转换为磁盘上的MyISAM表。
   我们实际操作中可能出现的问题就是查询结果太大了导致内存不够,往磁盘上搬。

3.Creating tmp table
  创建了临时表

4.Coping to tmp table on disk
  把内存中临时表复制到磁盘

5.locked
  加锁

------------------------------------------------ 

2,4 可以修改一下tmp_table_size和max_heap_table_size两个参数来调整

索引相关原因

索引相关的问题,一般能用explain命令帮助分析。通过它能看到用了哪些索引,大概会扫描多少行之类的信息。

mysql会在优化器阶段里看下选择哪个索引,查询速度会更快。

一般主要考虑几个因素,比如:

  • 选择这个索引大概要扫描多少行(rows)

  • 为了把这些行取出来,需要读多少个16kb的页

  • 走普通索引需要回表,主键索引则不需要,回表成本大不大?

回到show profile中提到的sql语句,我们使用explain select * from user where age>=60 分析一下。

图片

explain sql

上面的这条语句,使用的type为ALL,意味着是全表扫描possible_keys是指可能用得到的索引,这里可能使用到的索引是为age建的普通索引,但实际上数据库使用的索引是在key那一列,是NULL。也就是说这句sql不走索引,全表扫描

这个是因为数据表里,符合条件的数据行数(rows)太多,如果使用age索引,那么需要将它们从age索引中读出来,并且age索引是普通索引,还需要回表找到对应的主键才能找到对应的数据页。算下来还不如直接走主键划算。于是最终选择了全表扫描。

当然上面只是举了个例子,实际上,mysql执行sql时,不用索引或者用的索引不符合我们预期这件事经常发生,索引失效的场景有很多,比如用了不等号,隐式转换等,这个相信大家背八股文的时候也背过不少了,我也不再赘述。

聊两个生产中容易遇到的问题吧。

索引不符合预期

实际开发中有些情况比较特殊,比如有些数据库表一开始数据量小,索引少,执行sql时,确实使用了符合你预期的索引。但随时时间边长,开发的人变多了,数据量也变大了,甚至还可能会加入一些其他重复多余的索引,就有可能出现用着用着,用到了不符合你预期的其他索引了。从而导致查询突然变慢。

这种问题,也好解决,可以通过force index指定索引。比如

图片

force index指定索引

通过explain可以看出,加了force index之后,sql就选用了idx_age这个索引了。

走了索引还是很慢

有些sql,用explain命令看,明明是走索引的,但还是很慢。一般是两种情况:

第一种是索引区分度太低,比如网页全路径的url链接,这拿来做索引,一眼看过去全都是同一个域名,如果前缀索引的长度建得不够长,那这走索引跟走全表扫描似的,正确姿势是尽量让索引的区分度更高,比如域名去掉,只拿后面URI部分去做索引。

图片

索引前缀区分度太低

第二种是索引中匹配到的数据太大,这时候需要关注的是explain里的rows字段了。

它是用于预估这个查询语句需要查的行数的,它不一定完全准确,但可以体现个大概量级。

当它很大时,一般常见的是下面几种情况。

  • 如果这个字段具有唯一的属性,比如电话号码等,一般是不应该有大量重复的,那可能是你代码逻辑出现了大量重复插入的操作,你需要检查下代码逻辑,或者需要加个唯一索引限制下。

  • 如果这个字段下的数据就是会很大,是否需要全部拿?如果不需要,加个limit限制下。如果确实要拿全部,那也不能一次性全拿,今天你数据量小,可能一次取一两万都没啥压力,万一哪天涨到了十万级别,那一次性取就有点吃不消了。你可能需要分批次取,具体操作是先用order by id排序一下,拿到一批数据后取最大id作为下次取数据的起始位置。

连接数过小

索引相关的原因我们聊完了,我们来聊聊,除了索引之外,还有哪些因素会限制我们的查询速度的。

我们可以看到,mysql的server层里有个连接管理,它的作用是管理客户端和mysql之间的长连接。

正常情况下,客户端与server层如果只有一条连接,那么在执行sql查询之后,只能阻塞等待结果返回,如果有大量查询同时并发请求,那么后面的请求都需要等待前面的请求执行完成后,才能开始执行。

图片

连接过少会导致sql阻塞

因此很多时候我们的应用程序,比如go或java这些,会打印出sql执行了几分钟的日志,但实际上你把这条语句单独拎出来执行,却又是毫秒级别的。这都是因为这些sql语句在等待前面的sql执行完成。

怎么解决呢?

如果我们能多建几条连接,那么请求就可以并发执行,后面的连接就不用等那么久了。

图片

增加连接可以加快执行sql

而连接数过小的问题,受数据库和客户端两侧同时限制

数据库连接数过小

Mysql的最大连接数默认是100, 最大可以达到16384

可以通过设置mysql的max_connections参数,更改数据库的最大连接数。

mysql> set global max_connections= 500;
Query OK, 0 rows affected (0.00 sec)

mysql> show variables like 'max_connections';
+-----------------+-------+
| Variable_name   | Value |
+-----------------+-------+
| max_connections | 500   |
+-----------------+-------+
1 row in set (0.00 sec)

上面的操作,就把最大连接数改成了500。

应用侧连接数过小

数据库连接大小是调整过了,但貌似问题还是没有变化?还是有很多sql执行达到了几分钟,甚至超时?

那有可能是因为你应用侧(go,java写的应用,也就是mysql的客户端)的连接数也过小。

应用侧与mysql底层的连接,是基于TCP协议的长链接,而TCP协议,需要经过三次握手和四次挥手来实现建连和释放。如果我每次执行sql都重新建立一个新的连接的话,那就要不断握手和挥手,这很耗时。所以一般会建立一个长连接池,连接用完之后,塞到连接池里,下次要执行sql的时候,再从里面捞一条连接出来用,非常环保。

图片

连接池原理

我们一般写代码的时候,都会通过第三方的orm库来对数据库进行操作,而成熟的orm库,百分之一千万都会有个连接池。

而这个连接池,一般会有个大小。这个大小就控制了你的连接数最大值,如果说你的连接池太小,都还没有数据库的大,那调了数据库的最大连接数也没啥作用。

一般情况下,可以翻下你使用的orm库的文档,看下怎么设置这个连接池的大小,就几行代码的事情,改改就好。比如go语言里的gorm里是这么设置的

func Init() {
  db, err := gorm.Open(mysql.Open(conn), config)
    sqlDB, err := db.DB()
    // SetMaxIdleConns 设置空闲连接池中连接的最大数量
    sqlDB.SetMaxIdleConns(200)
    // SetMaxOpenConns 设置打开数据库连接的最大数量
    sqlDB.SetMaxOpenConns(1000)
}

buffer pool太小

连接数是上去了,速度也提升了。

曾经遇到过面试官会追问,有没有其他办法可以让速度更快呢?

那必须要眉头紧锁,假装思考,然后说:有的

我们在前面的数据库查询流程里,提到了进了innodb之后,会有一层内存buffer pool,用于将磁盘数据页加载到内存页中,只要查询到buffer pool里有,就可以直接返回,否则就要走磁盘IO,那就慢了。

也就是说,如果我的buffer pool 越大,那我们能放的数据页就越多,相应的,sql查询时就更可能命中buffer pool,那查询速度自然就更快了。

可以通过下面的命令查询到buffer pool的大小,单位是Byte

mysql> show global variables like 'innodb_buffer_pool_size';
+-------------------------+-----------+
| Variable_name           | Value     |
+-------------------------+-----------+
| innodb_buffer_pool_size | 134217728 |
+-------------------------+-----------+
1 row in set (0.01 sec)

也就是128Mb

如果想要调大一点。可以执行

mysql> set global innodb_buffer_pool_size = 536870912;
Query OK, 0 rows affected (0.01 sec)

mysql> show global variables like 'innodb_buffer_pool_size';
+-------------------------+-----------+
| Variable_name           | Value     |
+-------------------------+-----------+
| innodb_buffer_pool_size | 536870912 |
+-------------------------+-----------+
1 row in set (0.01 sec)

这样就把buffer pool增大到512Mb了。

但是吧,如果buffer pool大小正常,只是别的原因导致的查询变慢,那改buffer pool毫无意义。

但问题又来了。

怎么知道buffer pool是不是太小了?

这个我们可以看buffer pool的缓存命中率

图片

查看buffer pool命中率

通过 show status like 'Innodb_buffer_pool_%';可以看到跟buffer pool有关的一些信息。

Innodb_buffer_pool_read_requests表示读请求的次数。

Innodb_buffer_pool_reads 表示从物理磁盘中读取数据的请求次数。

所以buffer pool的命中率就可以这样得到:

buffer pool 命中率 = 1 - (Innodb_buffer_pool_reads/Innodb_buffer_pool_read_requests) * 100%

比如我上面截图里的就是,1 - (405/2278354) = 99.98%。可以说命中率非常高了。

一般情况下buffer pool命中率都在99%以上,如果低于这个值,才需要考虑加大innodb buffer pool的大小。

当然,还可以把这个命中率做到监控里,这样半夜sql变慢了,早上上班还能定位到原因,就很舒服。

还有哪些骚操作?

前面提到的是在存储引擎层里加入了buffer pool用于缓存内存页,这样可以加速查询。

那同样的道理,server层也可以加个缓存,直接将第一次查询的结果缓存下来,这样下次查询就能立刻返回,听着挺美的。

按道理,如果命中缓存的话,确实是能为查询加速的。但这个功能限制很大,其中最大的问题是只要数据库表被更新过,表里面的所有缓存都会失效,数据表频繁的更新,就会带来频繁的缓存失效。所以这个功能只适合用于那些不怎么更新的数据表。

另外,这个功能在8.0版本之后,就被干掉了。所以这功能用来聊聊天可以,没必要真的在生产中使用啊。

图片

查询缓存被删除

总结

  • 数据查询过慢一般是索引问题,可能是因为选错索引,也可能是因为查询的行数太多。

  • 客户端和数据库连接数过小,会限制sql的查询并发数,增大连接数可以提升速度。

  • innodb里会有一层内存buffer pool用于提升查询速度,命中率一般>99%,如果低于这个值,可以考虑增大buffer pool的大小,这样也可以提升速度。

  • 查询缓存(query cache)确实能为查询提速,但一般不建议打开,因为限制比较大,并且8.0以后的Mysql里已经将这个功能干掉了。

1 性能优化 1.1 避免频繁 commit,尤其是把 commit 写在循环体中每次循环都进行commit。 1.2 使用绑定变量,避免常量的直接引用。 示例:以下书写不符合本规范。 INSERT INTO sm_users (user_id, user_name, created_by, creation_date) VALUES (1, 'Tang', -1, SYSDATE); 建议用如下方式操作: DECLARE v_user_id sm_users.user_id%TYPE; v_user_name sm_users_user_name%TYPE; v_created_by sm_users.created_by%TYPE; v_creation_date sm_users.creation_date%TYPE; BEGIN ... INSERT INTO sm_users (user_id, user_name, created_by, creation_date) VALUES (v_user_id, v_user_name, v_created_by, v_creation_date); END; 1.3 Operator 的使用规范  IN  比较容易写及清晰易懂  但效能是比较低的  ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查询外层的表记录,如果转换成功则直接采用多个表的连接方式查询。由此可见用IN的SQL至少多了一个转换的过程。一般的SQL都可以转换成功,但对于含有分组统计等方面的SQL就不能转换了。  NOT IN  此操作是强列推荐不使用的,因为不能应用表的索引。  推荐方案:用NOT EXISTS 或(Outer-Join+判断为空)方案代替 例如: SELECT deptno FROM dept WHERE deptno NOT IN(SELECT deptno FROM emp) 建议写成: SELECT deptno FROM dept, emp WHERE dept.deptno = emp.deptno(+) AND emp.deptno IS NULL  <>  永远不会用到索引的  推荐方案:用其它相同功能的操作运算代替,如: a<>0 改为 a>0 or a<0 a<>’’ 改为 a>’’  IS NULL 或IS NOT NULL  一般是不会应用索引的,因为B-tree索引是不索引空值的。  推荐方案:用其它相同功能的操作运算代替,如: a is not null 改为 a>0 或a>’’  不允许段为空,而用一个default代替空值,如业扩申请中状态区位不允许为空, default为申请。  > 及 <  有索引就会采用索引查找  但有的情况下可以对它进行优化  如一个表有100记录,一个数值型段A,30记录的A=0,30记录的A=1,39记录的A=2,1记录的A=3。那么执行A>2与A>=3的效果就有很大的区别了,因为A>2时ORACLE会先找出为2的记录索引再进行比较,而A>=3时ORACLE则直接找到=3的记录索引。  LIKE  LIKE可以应用通配符查询,里面的通配符组合可能达到几乎是任意的查询,但是如果用得不好则会产生性能上的问题,如LIKE ‘%5400%’ 这种查询不会引用索引,而LIKE ‘X5400%’则会引用范围索引。性能肯定大大提高。  UNION  SQL在运行时先取出数个查询的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,如果表数据量大的话可能会导致用磁盘进行排序。  实际大部分应用中是不会产生重复的记录,推荐采用UNION ALL操作符替代UNION,因为UNION ALL操作只是简单的将两个结果合并后就返回。  Exists 示例:当有 A、B 两个结果集,当结果集 B 很大时,A 较小时,适用 exists,如: SELECT * FROM a WHERE EXISTS(SELECT 1 FROM b WHERE a.COLUMN = b.COLUMN); 当结果集 A 很大时,B 很小时,适用 in,如: SELECT * FROM a WHERE a.COLUMN IN(SELECT b.COLUMN FROM b) 1.4 SQL书写的影响  同一功能同一性能不同写法SQL的影响  Select * from zl_yhjbqk  Select * from dlyx.zl_yhjbqk(带表所有者的前缀)  Select * from DLYX.ZL_YHJBQK(大写表名)  Select * from DLYX.ZL_YHJBQK(中间多了空格)  以上四个SQL在ORACLE分析整理之后产生的结果及执行的时间是一样的,但是从ORACLE共享内存SGA的原理,可以得出ORACLE对每个SQL 都会对其进行一次分析,并且占用共享内存,如果将SQL符串及格式写得完全相同则ORACLE只会分析一次,共享内存也只会留下一次的分析结果,这不仅可以减少分析SQL的时间,而且可以减少共享内存重复的信息,ORACLE也可以准确统计SQL的执行频率。  WHERE后面的条件顺序影响  Select * from zl_yhjbqk where dy_dj = '1KV以下' and xh_bz=1  Select * from zl_yhjbqk where xh_bz=1 and dy_dj = '1KV以下'  以上两个SQL中dy_dj(电压等级)及xh_bz(销户标志)两个段都没进行索引,所以执行的时候都是全表扫描,第一条SQL的dy_dj = '1KV以下'条件在记录集内比率为99%,而xh_bz=1的比率只为0.5%,在进行第一条SQL的时候99%条记录都进行dy_dj及xh_bz的比较,而在进行第二条SQL的时候0.5%条记录都进行dy_dj及xh_bz的比较,以此可以得出第二条SQL的CPU占用率明显比第一条低。  查询表顺序的影响  在FROM后面的表中的列表顺序会对SQL执行性能影响,在没有索引及ORACLE没有对表进行统计分析的情况下ORACLE会按表出现的顺序进行链接,由此因为表的顺序不对会产生十分耗服务器资源的数据交叉。(注:如果对表进行了统计分析,ORACLE会自动先进小表的链接,再进行大表的链接)  对条件段的一些优化  采用函数处理的段不能利用索引,如: substr(hbs_bh,1,4)=’5400’,优化处理:hbs_bh like ‘5400%’ trunc(sk_rq)=trunc(sysdate), 优化处理: sk_rq>=trunc(sysdate) and sk_rq<trunc(sysdate+1)  进行了显式或隐式的运算的段不能进行索引,如: ss_df+20>50,优化处理:ss_df>30 ‘X’||hbs_bh>’X5400021452’,优化处理:hbs_bh>’5400021542’ sk_rq+5=sysdate,优化处理:sk_rq=sysdate-5 hbs_bh=5401002554,优化处理:hbs_bh=’ 5401002554’ 注:此条件对hbs_bh 进行隐式的to_number转换,因为hbs_bh段是符型  条件内包括了多个本表的段运算时不能进行索引,如: ys_df>cx_df,无法进行优化 qc_bh||kh_bh=’5400250000’,优化处理:qc_bh=’5400’ and kh_bh=’250000’  HINT  是在ORACLE产生的SQL分析执行路径不满意的情况下要用到的。它可以对SQL进行以下方面的提示  目标方面的提示:  COST(按成本优化)  RULE(按规则优化)  CHOOSE(缺省)(ORACLE自动选择成本或规则进行优化)  ALL_ROWS(所有的行尽快返回)  FIRST_ROWS(第一行资料尽快返回)  执行方法的提示:  USE_NL(使用NESTED LOOPS方式联合)  USE_MERGE(使用MERGE JOIN方式联合)  USE_HASH(使用HASH JOIN方式联合)  索引提示:  INDEX(TABLE INDEX)(使用提示的表索引进行查询)  其它高级提示(如并行处理等等) 1.5 索引的规则: 建立索引常用的原则如下: 1. 表的主键、外键必须有索引 2. 数据量超过 1000 行的表应该有索引 3. 经常与其它表进行连接的表,在边接段上应建立索引 4. 经常出现在 where 子句中的段且过滤性极强的,特别是大表的段,应该建立索引 5. 索引段,尽量避免值为 null 6. 复合索引的建立需要仔细分析;尽量考虑用单段索引代替:  正确选择复合索引中的第一个段,一般是选择性较好的且在 where 子句中常的段上。  复合索引的几个段是否经常同时以and方式出现在where子句中?单查询是否极少甚至没有?如果是,则可以建立复合索引;否则考虑单段索引。  如果复合索引中包含的段经常单独出现在 where 子句中,则分解为多个单段索引。  如果复合索引所包含的段超过 3 个,那么仔细考虑其必要性,考虑减少复合的段。  如果既有单段索引,又有这几个段上的复合索引,一般可以删除复合索引; 7. 频繁 DDL 的表,不要建立太多的索引 8. 删除无用的索引,避免对执行计划造成负面影响 9. 让 SQL 语句用上合理的索引,合理让 SQL 语句使用索引的原则如下:  首先,看是否用上了索引,对于该使用索引而没有用上索引的 SQL 语句,应该想办法用上索引。  其次,看是否用上正确的索引了,特别复杂的 SQL 语句,当其中 where 子句包含多个带有索引的段时,更应该注意索引的选择是否合理。错误的索引不仅不会带来性能的提高,相反往往导致性能的降低。  针对如何用上合理的索引,以 Oracle 数据中的例子进行说明:  任何对列的操作都可能导致全表扫描,这里所谓的操作包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等式的右边,甚至去掉函数。  避免不必要的类型转换,要了解“隐藏”的类型转换。  增加查询的范围,限制全范围的搜索。  索引选择性低,但资料分布差异很大时,仍然可以利用索引提高效率。  Oracle 优化器无法用上合理索引的情况下,利用 hint 强制指定索引。  使用复合索引且第一个索引段没有出现在 where 中时,建议使用 hint 强制。 1.6 索引使用优化  建立Plan_Table CREATE TABLE PLAN_TABLE ( STATEMENT_ID VARCHAR2(30), TIMESTAMP DATE, REMARKS VARCHAR2(80), OPERATION VARCHAR2(30), OPTIONS VARCHAR2(30), OBJECT_NODE VARCHAR2(128), OBJECT_OWNER VARCHAR2(30), OBJECT_NAME VARCHAR2(30), OBJECT_INSTANCE NUMBER(38), OBJECT_TYPE VARCHAR2(30), OPTIMIZER VARCHAR2(255), SEARCH_COLUMNS NUMBER(38), ID NUMBER(38), PARENT_ID NUMBER(38), POSITION NUMBER(38), OTHER LONG )  Syntax 说明: explain plan set statement_id = user_define for select ... 将结果显示 SELECT LPAD(' ', 2 *(LEVEL - 1)) || operation op, options, object_name, POSITION FROM plan_table START WITH ID = 0 AND STATEMENT_ID = user_define CONNECT BY PRIOR ID = parent_id AND STATEMENT_ID = user_define  示例 如要测试下面SQL: SELECT c.short, a.cday, a.card_no, a.qty FROM sales.stockiohis a, sales.product_info b, sales.vendor c WHERE a.card_no = b.card_no AND b.vendorid = c.vendorid AND a.produce_no = '2007090001' AND a.CATEGORY = '10' AND a.iotype = '1' 新增文件:例 d:\mydoc\plan.sql '0001'为user_define为使用者自定义编号 EXPLAIN PLAN SET STATEMENT_ID = '0001' FOR SELECT 'X' FROM sales.stockiohis a ,sales.product_info b ,sales.vendor c WHERE a.card_no = b.card_no AND b.vendorid = c.vendorid AND a.produce_no = '2007090001' AND a.CATEGORY = '10' AND a.iotype = '1' / SET arraysize 1 SET line 100 COLUMN op format a40 COLUMN object_name format a20 COLUMN options format a20 SELECT LPAD(' ', 2 *(LEVEL - 1)) || operation op, options, object_name, POSITION FROM plan_table START WITH ID = 0 AND STATEMENT_ID = '0001' CONNECT BY PRIOR ID = parent_id AND STATEMENT_ID = '0001' / DELETE FROM plan_table WHERE STATEMENT_ID = '0001' / COMMIT / 结果 1.7 避免不必要的排序 说明:对查询结果进行排序会大大的降低系统的性能,group与union都会对数据作排序,要耗费较多的内存,视状况用union all既可,不然有时数据太大又要进行union的排序,会导致Oracle数据库SORT_AREA_SIZE不足发生系统错误。 1.8 对于数型的Primary Key,建议用序列 sequence 产生。 说明:除非是单据的单号,要求必须是唯一,并且依据流水号不可以跳号,不然在大量交易的表格中,不在乎跳耗时,要取得唯一的Primary Key 建议使用Oracle Sequence这样速度会较快,而且不会有锁定(Lock)的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

01Byte空间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值