科普文:NLP自然语言处理系列之【NLP基本概念】

37 篇文章 0 订阅
35 篇文章 0 订阅

NLP自然语言处理

自然语言处理(Natural Language Processing,简称NLP)是计算机科学和人工智能领域中一个关键的研究方向。它涉及到计算机如何理解和生成人类语言的科学和技术。

图片

NLP领域可以进一步细分为两个主要部分:自然语言理解(Natural Language Understanding,NLU)和自然语言生成(Natural Language Generation,NLG)。

  1. NLU专注于使机器能够理解自然语言的含义,涵盖了文本分类、实体识别、语句分析和机器阅读理解等任务。
  2. NLG的任务是在机器理解了自然语言之后,如何生成人类可以理解的回应,这包括自动摘要、机器翻译和自动问答等应用。

NLU是NLG的基石,它帮助机器更准确地生成人类可理解的语言。从应用的角度来看,NLP技术广泛应用于多个领域,包括但不限于:

  1. 信息抽取:从文本中提取关键信息。
  2. 信息检索:帮助用户快速找到所需信息。
  3. 文本分类:将文本自动分类到不同的类别中。
  4. 文本挖掘:深入分析文本数据,发现模式和趋势。
  5. 信息过滤:筛选出有价值的信息。
  6. 舆情分析:分析公众情绪和意见。
  7. 文本摘要:生成文本的简短摘要。
  8. 文本生成:创作新的文本内容。
  9. 机器翻译:将一种语言翻译成另一种语言。
  10. 对话/问答系统:与用户进行交互对话或回答问题。
  11. 知识库和知识图谱:构建和利用知识库,形成知识网络。

NLP技术的发展不仅推动了人机交互的革新,也为数据分析和信息处理提供了强大的工具。

NLP自然语言处理的分析层次

在人类学习语言和分析语言的过程中,我们通常会经历从字词到篇章的多个分析层次。

首先,我们识别字词和发音,然后学习如何将这些词汇组合成句子。随着句子的组合,我们进一步形成篇章,并关注文章的主题和上下文关系。

图片

在自然语言处理(NLP)领域,这种分析方法同样适用,并且被划分为形态学、语法学、语义学和语用学四个层次。

形态学专注于词的内部结构,语法学则研究句子结构及其组成部分的规则和关系。

语义学关注语言的含义,探讨从词到句的表面客观意义,而语用学则研究语言在现实使用中的情况,包括在上下文、文化和规则等约束下的整体篇章语言的理解和使用。

图片

在语言学中,文字被视为符号,词法和语法研究的是这些符号所代表的词性、词性之间的组合规则和关系。

语义学则研究符号表达的真实信息和含义,例如“房子”在词法中是一个符号,可以作为主语,与句子中的其他词语形成从属或关联关系。在语义学中,“房子”可能包含居住地、资产、财富等含义。

语用学进一步探讨词句在不同上下文语境中的语义,如“房子”在某个语境中可能指居住场所,在其他语境下可能指资产。尽管分析的对象都是词和句,但每个层次分析的维度和侧重点各有不同。

NLP自然语言处理:词法分析

词法分析是自然语言处理中的基础环节,涵盖分词、新词发现、词性标注和拼写矫正等关键步骤。

  1. 分词:将文本分解为独立词汇的过程,对中文尤为重要,因为中文词汇之间没有空格分隔,而英文单词则通过空格隔开,使得分词相对简单;

  2. 新词发现:关注于识别和理解文本中未被传统字典收录的新词汇,这些词汇在互联网快速发展的背景下快速传播,对语义理解具有重要影响;

  3. 词性标注:通过为单词分配名词、动词等属性标签,帮助理解句子结构,消除歧义;

  4. 拼写矫正:识别并纠正文本中的拼写错误,广泛应用于文本编辑和信息核验等领域。

NLP自然语言处理:句法分析

句法分析,亦称语法分析,是文本处理中的关键环节,它深入探讨句子的语法结构及单词间的依存关系。

1.句法分析的分类

依存句法分析:专注于分析词与词之间的依赖关系,例如从属、并列、递进等,旨在揭示更深层的语义信息。

句法结构分析:专注于分析句子的语法结构,如主干与各成分之间的关系,包括主谓宾定状从等语法角色。

2.语言模型(Language Modeling,LM)

语言模型的作用:根据给定的前一个字或词来预测文本中的下一个字或词,以预测整个句子。

3.句法分析的应用

语种识别:通过句子确定语言的种类,属于语言分类问题。

句子边界检测:在没有明显句子边界的文本中增加边界,如添加标点,这在语音转换文本的应用中尤为重要。

NLP自然语言处理:语义分析

在处理语言的过程中,把握句子的深层含义至关重要。

在真实世界中,许多句子都可能具有多重解释。例如,中文句子"我叫他去"既可以指"我亲自去叫他",也可以指"我让他去某个特定的地点"。一句话可能蕴含多种不同的意义。

在语言学领域,语义分析属于自然语言处理(NLP)的高级阶段,其核心任务是揭示文本中词汇、句子乃至整篇文章所要表达的真正意图。

图片

1.词语级的语义分析

词语级的语义分析任务通常包括词义消歧、词表征、同义词挖掘,以及上位词与下位词关系挖掘等。

词义消歧的目的是确定词语在具体语境中的真实意义。

由于一词多义是语言的固有特性,例如‘苹果’可以指科技品牌或产品,也可以指水果。如果在‘苹果’后面添加‘手机’或‘公司’等词语,就能够消除歧义。

词表征是将词语转换为计算机可处理的向量。随着 Word2Vec 等深度学习方法的出现,词表征任务的主要研究方向变成了如何在词向量中有效地包含词语的语义信息,而不仅仅是简单的字符代号。

同义词和上下位词的挖掘旨在处理语言中的多词同义现象,揭示和聚合词语之间的关系。

例如,‘汽车’、‘轿车’、‘车辆’是同义词;而‘发动引擎’、‘换挡’、‘踩油门’等动作都是‘驾驶’过程中的一部分,这些词语之间存在上下位关系。

2.句子级的语义分析

句子级的语义分析通过词义和语法等手段来解析句子的真实含义。

常见的句子级语义分析任务包括语义角色标注、文本蕴含分析以及句向量表示等。

语义角色标注(Semantic Role Labeling,SRL)是一种浅层语义分析方法,通过识别和分析句子中的核心和附属语义角色来理解其含义。核心语义角色包括施事者、受事者等,附属语义角色则涵盖地点、时间、方式、原因等信息。

文本蕴含(Textual Entailment)指的是两个文本之间的语义联系,即一种推理关系。

通常,一个文本被视为前提 P,另一个作为假设 H。如果 P 可以推理出 H,则 P蕴含 H。文本蕴含关系可以看作一种分类任务,两个文本之间的关系可以是蕴含、冲突或中立。例如,如果 P是‘一只狗在雪地里玩球’,而 H 是‘一只动物在寒冷天气中玩玩具’,那么 P和 H之间存在蕴含关系。”

句向量是将句子转化为向量表示的方法,类似于词向量化。它能够捕捉句子级别的丰富语义信息,远比简单的字符顺序编码更为详尽。句向量的研究方法十分重要,因为它们能够进行句子之间的相似度比较,因此在文本检索和问答系统等应用中有着广泛的用途。

3.篇章级的语义分析

篇章级的语义分析是句子级语义分析的扩展,从更大的篇章角度来分析语义,涵盖词与词、句子与句子、段落与段落之间的语义关系,旨在实现整体篇章的语义理解。

这一领域的研究主要围绕三个核心路径展开:

  1. 文章结构分析关注各段之间的关系;
  2. 词汇语义分析探索词汇之间的语义连接;
  3. 背景知识分析则利用知识库或知识图谱来辅助篇章级语义分析。

在篇章级语义分析中,常见的任务包括指代消解。

在语言应用中,通常会使用代词来替代重复出现的人或物,这种现象称为“指代”。

指代解决了因词语重复出现而带来的臃肿和累赘问题,但也可能导致指代不明确的情况。

指代消解是将代表同一个实体的不同代词归并到同一集合的过程。

为了完成指代消解,需要跨越不同句子甚至不同段落的信息,以确定这些代词所指的具体实体。

NLP自然语言处理:信息抽取

信息抽取,也称为Information Extraction,是一个自动化过程,它将文本中的非结构化信息转换为机器可理解的、结构化的形式。这个过程涉及到识别和提取文本中的实体(Entity)、关系(Relation)和事件(Event)。

图片

具体来说,信息抽取通常包括以下几个步骤:

1.命名实体识别:识别文本中的特定实体,如人名、地点、组织等。

2.关系抽取:确定文本中实体之间的联系或关系。

3.事件提取:识别文本中描述的事件及其参与者。

NLP自然语言处理:信息抽取之命名实体识别(Named Entity Recognition)

命名实体识别(Named Entity Recognition,简称NER)是信息抽取领域的一个重要分支。

它的核心任务是在文本中识别出具有特定意义的实体,并将其归类到相应的类别中。

这些实体包括但不限于人名、地名、机构名、物品名以及其他专有名词。

通过精确地确定这些实体的边界并进行分类,NER为深入理解文本的语义提供了基础。

图片

在命名实体识别(NER)的早期发展阶段,主要依赖于规则和词典的方法。

这种方法通过定义关键词、位置词、标点符号等信息来设计规则模板和构建常识字典,然后通过匹配这些规则来抽取文本中的实体。

随着机器学习技术的发展,NER逐渐被视作一种序列标注问题。

这意味着文本中的词语被视为序列,机器学习模型根据序列中每个词的上下文信息对其进行分类标记,这与独立的分类问题不同,因为序列中的每个词都与其前后词存在关联。简单来说,如果输入是一个句子,NER的目标就是输出这个句子中各个实体的类别标记。在机器学习方法中,常用的技术包括隐马尔可夫模型(HMM)、最大熵模型(MaxEnt)等。

近年来,随着深度学习的兴起,NER的研究和应用已经转向利用深度神经网络,其中包括利用注意力机制的模型和图神经网络等先进的深度学习方法。这些方法通过构建更为复杂的模型结构,能够更有效地捕捉和理解文本中的语义信息,从而提高NER的准确性和效率。

在命名实体识别(NER)的应用实践中,尽管采用新技术能够带来更优越的性能,但仍然面临一系列挑战。

  • 首先,通用的实体识别模型往往难以直接应用于特定细分领域,因为这些领域可能缺乏足够的资源和标注数据集,导致模型训练面临困难。
  • 其次,实体的表达形式多样,且容易引发歧义,这要求NER系统必须深入挖掘和理解上下文中的关联语义,以准确识别实体。
  • 此外,实体的开放性也是一个问题,因为实体的定义和范围可能会随着时间和社会的发展而变化,这可能导致一些先前有效的实体识别规则变得不再适用。
  • 因此,NER系统的开发和维护需要不断地适应新的数据和场景,以保持其有效性和准确性。

命名实体识别(NER)技术在多种业务场景中发挥着重要作用。

例如,在构建知识库和知识图谱的过程中,NER扮演着关键角色,负责从文本中抽取关键知识点。在问答(QA)任务中,NER用于文本理解,通过词槽抽取来识别问题中的关键信息。

此外,在舆情分析领域,NER技术能够识别文本中的敏感实体,帮助分析和理解公众情绪和态度。通过这些应用,NER技术为信息的自动处理和分析提供了强大的支持。

在实现命名实体识别(NER)的过程中,通常会采用监督学习、半监督学习乃至无监督学习的方法。

其中,语料的准备尤为关键。由于实体类型繁多,进行标准的语料标注需要耗费大量的人力和专业知识。

在实际操作中,可以通过对少量种子语料进行标注,构建一个初始的NER模型。

随后,利用这个模型对文本进行挖掘和聚合,识别出与种子语料相似的其他语料。

这些新识别的语料将被用于进一步的筛选和扩充种子集。通过这种迭代过程,模型不断地学习和优化,最终能够发展成一个高精度的NER模型。

NLP自然语言处理:信息抽取之关系抽取(Relation Extraction, RE)

关系抽取(Relation Extraction, RE)是指从文本中识别并获取实体之间的语义关系。

例如,识别人物之间的子女、配偶、同事等关系,以及实体之间的从属关系,如文章的作者、歌曲的演唱者等。

根据是否有确定的关系集合,关系抽取(RE)可以分为限定关系抽取和开放式关系抽取。

限定关系抽取中,所有关系集合都是事先确定好的,这时RE可以视为一个分类问题。相对地,开放式关系抽取中,关系集合和语料库等领域均可能是开放和不确定的。

除了关系抽取之外,还有实体抽取。根据实体抽取和关系抽取是否联合实现,算法技术可以分为流程式和端到端两种。

  1. 流程式方法是实体抽取和关系抽取分别独立实现,其中关系抽取依赖于实体识别的结果,因此如果实体识别结果不佳,关系抽取的结果也会受到影响。
  2. 端到端的实现方式则是同时进行实体抽取和关系抽取,共享模型参数,这种方式更容易学习到丰富的联合信息。

NLP自然语言处理:信息抽取之事件抽取(Event Extraction, EE)

事件提取(Event Extraction,简称EE)是一种技术,它专注于从文本中识别和提取事件信息,并将这些信息以结构化的方式进行存储和展示。

这包括事件的发生时间、地点、过程等关键细节。

事件提取技术在网络舆情监控和突发事件报警等应用领域扮演着重要角色。

图片

在事件提取的实践中,可以根据其覆盖范围将其分为两大类:元事件提取和主题事件提取。

元事件提取主要关注描述简单的动作或状态的改变,而主题事件提取则涵盖了一类事件的详细描述及其发展过程。主题事件提取通常由多个元事件组合而成。

为了有效地进行事件提取,通常会根据具体任务的需求来制定一个事件类型体系。这个体系会帮助识别事件的描述、类型和关键要素,从而确保提取过程的准确性和全面性。

在事件提取领域,元事件提取主要采用模式匹配和机器学习两种方法。

其中,模式匹配依赖于手工构建元事件模板,这种方法更适用于专业性较强的特定领域。

而基于统计的机器学习方法则将元事件的事件检测和论元识别问题转化为分类问题。

随着深度学习方法的应用,事件提取的精度得到了显著提升。

另一方面,主题事件提取则主要采用基于事件框架和基于本体的方法进行提取。

NLP自然语言处理:知识图谱(Knowledge Graph)

知识图谱(Knowledge Graph)是一种以图形化方式表达知识的语义网络。

它通过将现实世界中的实体、概念、关系和事件等元素进行有效的连接和整合,实现了知识的结构化和可视化。

这种形式不仅有助于理解复杂的信息关系,还促进了知识的深入挖掘和应用。

图片

认知图谱(Cognitive Graph)是一种创新技术,它融合了认知心理学、脑科学和人类知识等领域的研究。

其目标是开发出一种集成了知识图谱、认知推理和逻辑表达的新一代认知引擎。

这种引擎将推动人工智能从简单的感知智能向更深层次的认知智能发展。

知识是连接感知与认知的关键。

通过知识的处理,感知到的信息能够转化为更深层次的认知。在人工智能技术中,知识图谱扮演着至关重要的角色,它涉及到知识的构建和加工。知识图谱不仅是感知智能向认知智能过渡的重要桥梁,也是实现更高级认知功能的基础。只有当大量知识被系统化地组织和连接,认知推理和联想等复杂的认知活动才能得到有效的促进和实现。

  • 16
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-无-为-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值