[bzoj1087][DP][状态压缩]互不侵犯King

123 篇文章 1 订阅
109 篇文章 4 订阅

Description

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

方案数。

Sample Input

3 2

Sample Output

16

HINT

N,K ( 1 <=N <=9, 0 <= K <= N * N)

题解

嗯。最近学的状态压缩,一道不错的状态压缩题。我们开一个三维的dp数组。dp[i][j][k]表示第i行,第j个状态(二进制的j。0表示不放国王,1表示放国王),到目前共使用了k个国王(包括本行)的最多方案数。状态转移方程就是dp[i][j][k]=dp[i][j][k]+dp[i-1][l][k-sum[i]] (l表示上一行与j可以匹配的方案,sum[i]表示第i个状态的人数).
这样我们就可以开心地用状态压缩做啦~第一道自己ac的bzoj题,很开心~

代码
update 2017/10/28
原先的代码太丑了。。不符合风范,改一改

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL f[10][1100][90];//i行 排列为j 共放k个 
int bin[11],n,kk;
int tmp[1100],tp,pos[1100];
int main()
{
    bin[1]=1;
    scanf("%d%d",&n,&kk);
    for(int i=2;i<=n+1;i++)bin[i]=bin[i-1]*2;
    memset(f,0,sizeof(f));
    tp=0;
    for(int i=0;i<=(1<<n)-1;i++)
        if((i&(i<<1))==0)
        {
            int s=0;
            for(int j=1;j<=n;j++)if((i&bin[j])!=0)s++;
            f[1][i][s]++;
            tmp[++tp]=i;pos[tp]=s;
        }
    for(int i=2;i<=n;i++)
        for(int j=1;j<=tp;j++)
            for(int k=1;k<=tp;k++)
            {
                if((tmp[j]&tmp[k])==0 && (tmp[j]&(tmp[k]<<1))==0 && (tmp[j]&(tmp[k]>>1))==0)
                {
                    for(int l=pos[k];l<=kk-pos[j];l++)f[i][tmp[j]][l+pos[j]]+=f[i-1][tmp[k]][l];
                }
            }
    LL ans=0;
    for(int i=1;i<=tp;i++)ans+=f[n][tmp[i]][kk];
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值