互不侵犯(状态压缩dp)

题目描述

链接

N × N N×N N×N 的棋盘里面放 K K K 个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 8 8 8 个格子。

输入格式

只有一行,包含两个数 N , K N,K N,K

输出格式

所得的方案数。

Input

3 2

Output

16

数据范围与提示

1 ≤ N ≤ 9 , 0 ≤ K ≤ N × N 1≤N≤9,0≤K≤N×N 1N9,0KN×N

思路

f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k] 表示在棋盘的前 i i i 行,放置了 j j j 颗棋子,并且第 i i i 行棋子的状态为 k k k 时,放置方法的数量。

f [   i   ] [   j   ] [   k   ] = ∑ k & k ′ = 0   & &   p [ k ∣ k ′ ] = 0 f [   i − 1   ] [   j − c [ k ]   ] [   k ′   ] f[~i~][~j~][~k~]=\sum_{k\&k'=0 ~\&\&~p[k|k']=0 } f[~i-1~][~j-c[k]~][~k'~] f[ i ][ j ][ k ]=k&k=0 && p[kk]=0f[ i1 ][ jc[k] ][ k ]

p [ k & k ′ ] = 0 p[k\&k']=0 p[k&k]=0 代表 k & k ′ k\&k' k&k 二进制下没有连续的 1 1 1
c [ k ] c[k] c[k] 代表 k k k 二进制下有多少个 1 1 1

答案为 ∑ 0 ≤ x < ( 1 < < n ) f [ n ] [ k ] [ x ] \sum_{0\le x <(1<<n)} f[n][k][x] 0x<(1<<n)f[n][k][x].

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=12,M=(1<<12);
int n,k,f[N][N*N][M],p[M],c[M],ans;

signed main(){
	ios::sync_with_stdio(false);
	cin>>n>>k;
	for(int i=0;i<(1<<n);i++){
		int flag=0,cnt=0;
		for(int j=0;j<n;j++){
			if(i>>j&1) flag|=cnt,cnt=1,c[i]++;
			else cnt=0;
		}
		p[i]=flag;
	}
	f[0][0][0]=1;
	for(int i=1;i<=n;i++)
		for(int j=0;j<=k;j++)
			for(int k=0;k<(1<<n);k++)
				for(int s=0;s<(1<<n);s++)
					if((k&s)==0&&p[s|k]==0&&j-c[k]>=0)
						f[i][j][k]+=f[i-1][j-c[k]][s];
	for(int i=0;i<(1<<n);i++)
		ans+=f[n][k][i];
	cout<<ans<<"\n";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_51864047

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值