目录
一、树
1、树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一颗倒挂的树,也就是说它是根朝上,而叶朝下的。
1、有一个特殊的结点,称为根结点,根结点没有前驱结点。
2、除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
3、因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构。变成了图形结构。
2、树的相关概念
1、结点的度:一个节点含有的子树的个数称为该结点的度;如上图:A的度为6。
2、叶子结点或终端结点:度为0的结点称为叶子结点;如上图:B、C、H、I......等结点为叶子结点。
3、双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点;如上图:A是B的父结点。
4、孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点。
5、兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点。
6、树的度:一棵树中,最大的结点的度称为数的度;如上图树的度为6。
7、结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
8、树的高度或深度:树中结点的最大层次; 如上图:树的高度为4。
9、堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为堂兄弟结点。
10、结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先。
11、子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙。
12、森林:由m(m>0)棵互不相交的树的集合称为森林。例如:并查集。
3、树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。
#include<iostream>
#include<vector>
using namespace std;
//1.明确树的度:数组
#define N 4
struct TreeNode
{
int val;
TreeNode* subs[N];
};
//2.没有明确树的度:顺序表、vector容器
struct TreeNode
{
int val;
//Seqlist subs; 顺序表中存储TreeNode*
vector<TreeNode*> subs;
};
//3.左孩子右兄弟:两个节点指针
struct TreeNode
{
int val; //结点中的数据域
TreeNode* leftChild; //第一个孩子结点
TreeNode* rightBrother; //指向其下一个兄弟结点
};
4、树的引用:文件系统
二、二叉树
1.二叉树的概念
二叉树:由一个根结点加上两棵别称为左子树和右子树的二叉树组成。
特点:
1、二叉树不存在度大于2的结点。
2、二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2、特殊的二叉树
1、满二叉树
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1,则它就是满二叉树。
2、完全二叉树
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
3、二叉树的性质
4.二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1、顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
2、链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,初阶数据结构一般都是二叉链,高阶数据结构如红黑树等会用到三叉链。
typedef int DataType;
//二叉链
struct BinaryTreeNode
{
DataType data;
BinaryTreeNode* left;
BinaryTreeNode* right;
};
//三叉链
struct TernaryTreeNode
{
DataType data;
TernaryTreeNode* parent;
TernaryTreeNode* left;
TernaryTreeNode* right;
};