关于“DBDnet: A Deep Boosting Strategy for ImageDenoising“一文理解

译:DBDnet:图像去噪的深度提升策略

-- IEEE TRANSACTIONS ON MULTIMEDIA   -- 2021


目录

一、引言

二、方法

A、动机

B、NoN消除模块

C、网络结构

三、实验结果


一、引言

        在基于学习的去噪方法中,残差学习是最常用的去噪方法。这种方法可以将有噪声的观测结果生成噪声图,进而得到无噪声图像,如图1所示。

然而,基于残差学习的方法即使采用复杂的网络也很难获得精确的噪声图,即噪声图总是包含一些噪声。作者把这种噪声称为噪声图的噪声(NoN)。直观上,NoN越多,去噪性能越低,寻找一种有效的方法来减少NoN的影响,对于获得高质量的图像至关重要。

        以往基于深度学习的方法很少考虑这一问题。而在传统的图像去噪领域中,采用了基于boosting的方法,并设计了一些良好的boosting模块来解决这个问题。该模块可以迭代消除噪声图中的NON,提取出干净的噪声图。因此作者在深度学习的框架下开发了boosting算法,并充分利用它们的优势来消除NoN。

下面介绍boosting算法

        近年来,人们提出了多种基于boosting的方法,“twicing”技术是一个非常早期的研究,其boosting过程描述如下:

其中f是一个去噪算子,等式左边表示去噪图像的第n次迭代。

基于“twicing”技术,Bregman迭代采用了一种迭代正则化方法,该方法基于Bregman距离的概念,将残余噪声添加回观测信号。Bregman迭代的boosting过程可以写成:

近年来,boosting算法被引入深度学习领域,以提高网络的性能。下面介绍作者的方法。

二、方法

A、动机

        图像去噪的基本问题是从噪声观测y中恢复干净图像x,可以表述为:

其中v表示加性噪声映射,通常建模为零均值的高斯白噪声。残差学习网络的主要目标是从噪声观测y中生成噪声映射v的近似,这个过程可以表示为:

其中F表示生成噪声残差的算法,等式最左边为生成的噪声特征图(GNFM)。

此外,无噪声图像x的近似计算为:

其中等式左边为最终的去噪结果。从这个式子中看,\widehat{v}对最终的结果影响很大,然而由于一般网络的能力限制,\widehat{v}将包含一些噪声(即NoN),也就是v和\widehat{v}是不相等的,假设存在差距u,即两者满足:u=\widehat{v}-v

        作者认为u受两部分影响,首先是原始图像x的高频信息(即边界信息和细节信息),特别是在生成\widehat{v}的过程中,原始图像x的一些高频信息x_r会被识别为噪声,引入到\widehat{v}中,从而造成\widehat{v}的误识别部分。此外,噪声观测y的一些像素虽然被噪声污染了,但仍会被识别为干净像素。因此,不能完全从噪声观测中提取噪声图,\widehat{v}会包含一些未恢复的噪声信息v_r

        在这种情况下,u可以用u=\widehat{v}-v=x_r-v_r来表示。也就是说,将未恢复的噪声信息v_r加上,减去误识别的高频信息x_r,就可以从\widehat{v}得到干净的噪声映射v。过程可以表示为:

因此,在boost过程中,\widehat{v}可以通过以下方式更新:

其中\widehat{v_r}\widehat{x_r}是网络模拟v_rx_r生成的特征映射。

通过这种操作,NoN可以逐渐减少。

B、NoN消除模块

        在Eq.(7)的激励下,消除NoN的过程可以分解为生成特征图\widehat{v_r}、生成特征图\widehat{x_r}的过程。为此,作者提出了两种不同的NoN消除模块来生成这两种特征图。接下来,将分别详细介绍这两个非消除模块的具体实现。

(1)、模块A:模块A可以从\widehat{v}同时生成\widehat{v_r}\widehat{x_r},其整体结构如图2(A)所示。

使用一个卷积块来提取未恢复的噪声映射v_r和一个密集注意块来提取虚假高频信息x_r。注意,v_r是噪声映射v的一部分,可以很容易地从\widehat{v}中提取它。但是x_r是原始图像x的一部分而不是v的,所以为了精确提取它,作者采用了密集注意块(信息捕捉能力强)。为了提高密集注意块的复杂性和信息捕获能力,作者引入了两种先进的深度学习技术(密集连接和注意力机制),如图2(d)所示。

整个过程可以描述为:

CB是卷积块,DAB表示密集注意块。

(2)、模块B:作者发现从\widehat{v}中直接提取v_rx_r是不精确的,因为它们在被提取过程中会互相影响,模块B就是解决这个问题的,具体如图2(b)所示。模块B首先生成\widehat{v_r},然后减去它再作为下一个模块的输入。整个过程表示如下:

C、网络结构

        在获得以上两种NoN消除模块后,将它们插入到网络中,生成本文的DBDnet。网络结构如图3所示。

以噪声观测值y为输入,采用卷积层提取\widehat{v}^0,经历过n个NoN消除模块,最后经过一个卷积层得到最终预测的噪声图。具体算法如下:

其中NEM_n(\cdot )表示第n个NoN消除模块。

优化目标如下:

三、实验结果

        下面是部分实验结果。

灰度图:

其中GFLOPs为计算复杂度,FPS为推断速度。

真实图像:

代码:

pcl111/DBDNet: Code of "DBDnet: A Deep Boosting Strategy for Image Denoising" (github.com) 

 

 

 

 

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值