DeGAN:通过生成对抗网络去除混合噪声

目录

一、引言

二、网络及损失

三、主要实验结果


一、引言

首先介绍混合噪声:

        x为无噪声图像,y为其对应的观测噪声版本:

n是加性高斯白噪声(AWGN),n\sim N(0,\sigma^2),v是脉冲噪声(IN)——对像素造成破坏。一般的图像去噪模型只关注前一种噪声。下面介绍一下IN:

        假设[e_{min}, e_{max}]为图像像素值的变化范围。当一个图像被SPIN损坏时,它的一些像素值是e_{min}e_{max},当它被RVIN损坏时,它的一些像素值是e_{min}e_{max}之间的随机值。SPIN和RVIN是IN的两种形式。

本文关注三种不同类型的混合噪声:

(1)、AWGN+SPIN (2)、AWGN+RVIN (3)、AWGN+SPIN+RVIN

二、网络及损失

       网络结构如下:

要注意的是:生成器的输入不是单纯的噪声,而是带噪声的图片,输出一个去噪的图片。特征提取层的输入是去噪图像和干净图像,比较其相似性。

        损失包括四部分:1、对抗损失L_{ad};2、像素损失L_p;3、特征损失L_F;4、结构相似度损失L_{SSIM}

 

 鉴于L_F可能会丢失一些图像细节和模糊图像因此作者引入:

此外,考虑到L_pL_F不能衡量图像的结构相似度,作者又提出

其中

综上所述总的损失为:

三、主要实验结果

AWGN+SPIN:

 AWGN+RVIN:

 AWGN+SPIN+RVIN:

最后附tensorflow代码(非官方):DeGAN/DenoiseChannel.ipynb at main · wjayesh/DeGAN (github.com)

pytorch代码(非官方):

wahahahaya/DeGAN-noise_distribution (github.com)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值