自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(31)
  • 收藏
  • 关注

原创 论文理解:“Quadratic Residual Networks: A New Class of Neural Networks forSolving Forward and Inverse P“

译:二次残差网络一类新的神经网络涉及偏微分方程的物理正反问题的求解。

2022-08-23 21:29:06 849 1

原创 论文理解:“Multi-output physics-informed neural networks for forward andinverse PDE problems with uncer“

译:多输出物理信息神经网络用于不确定正、反偏微分方程问题。

2022-08-23 19:55:04 966

原创 论文理解:“Conservative physics-informed neural networks on discrete domainsfor conservation laws: Appl“

译:守恒定律离散域上的保守物理信息神经网络:在正问题和反问题中的应用。

2022-08-13 10:15:37 2003 2

原创 论文理解:“PIAT: Physics Informed Adversarial Training for Solving Partial Differential Equations“

译:解偏微分方程的物理对抗训练。

2022-08-09 21:06:46 1212

原创 论文理解:“Self-adaptive loss balanced Physics-informed neural networks“

译:自适应损失平衡物理信息神经网络-- Neurocomputing -- 2022 鉴于PINN的损失函数的各个权重是固定的,并且也有研究观察到PINN的训练效率敏感地依赖于与不同损失项相关的权重。但是一般的调整损失权重的方法非常耗时、费力,而且容易出现错误和遗漏。所以作者希望找到一种更方便的自适应学习损失权值的方法——自适应损失平衡物理信息神经网络(IbPINNs)。 首先PINN的损失是:其中损失权重λ大小是固定的,以及作者通过数值实验研究了损失权值对PINN精度的影响。这

2022-08-07 16:43:56 2227 3

原创 论文理解:“Gradient-enhanced physics-informed neural networks for forwardand inverse PDE problems“

译:梯度增强物理信息神经网络用于正向和反向偏微分方程问题。

2022-08-02 17:56:31 2241 1

原创 论文理解:“Cross-Scale Residual Network: A GeneralFramework for Image Super-Resolution,Denoising, and “

译一种通用框架的跨尺度残差网络。

2022-07-31 17:31:27 487

原创 论文理解:“Designing and training of a dual CNN for image denoising“

译用于图像去噪的双CNN的设计与训练。

2022-07-30 17:16:13 486

原创 对“Image Denoising Using an Improved Generative Adversarial Network with Wasserstein Distance“的理解

译"基于Wasserstein距离的改进生成对抗网络图像去噪"

2022-07-26 21:06:58 205

原创 对“DOF: A Demand-oriented Framework for ImageDenoising“的理解

译"DOF面向需求的图像去噪框架"

2022-07-24 23:04:24 619

原创 关于“DBDnet: A Deep Boosting Strategy for ImageDenoising“一文理解

译DBDnet图像去噪的深度提升策略。

2022-07-23 22:26:26 897

原创 一种鲁棒变形卷积神经网络图像去噪

CNN倾向于通过增加网络深度或宽度来提高性能,但这会增加训练成本;而轻量级CNN使用更小的卷积来减少计算成本,但会降低性能。为了解决这一问题,有人提出了技术。该方法通过一种注意机制来动态融合并行卷积核,而不是通过某个核来提取显著特征。即一种注意机制可以根据不同的输入动态调整每个核的权重,增强得到的特征的表达能力。另外,有人还提出了技术。Chen等人[39]利用不同注意机制的相互依赖关系定义了可变形机制,提高了图像分割中单一泛化卷积的能力。...

2022-07-16 20:00:40 1134

原创 基于多尺度残差密集块和块连接级联U-Net的真实图像去噪

为了解决这一问题,本文介绍了一种新的利用来自真实的噪声图像中的真实的噪声的数据排列方法。如图4所示,该方法的第一步是将groundtruth图像与相应的噪声图像相减,生成噪声图像数据。对于噪声数据,噪声聚类过程根据其对应的地真强度值将数据分为N个簇。排列后,生成新的合成噪声图像,并将其加回相应的groundtruth图像,生成新的合成噪声图像。传统的图像去噪研究主要集中在去除sRGB数据中的噪声,而近些年研究发现在Bayer原始数据中去噪将比在sRGB数据中去噪更有效。.........

2022-07-15 23:18:57 2524

原创 基于多码GAN先验的图像处理

生成高质量图像的能力使GANs适用于许多图像处理任务,如语义人脸编辑,超分辨率,图像到图像的翻译等。另一方面,大型GAN模型,如StyleGAN和BigGAN,在经过训练后,可以生成逼真的图像,但目前的研究还没有把这些训练好的模型做为先验信息应用于真实图像处理。实现这一目标的主要挑战是,GAN的生成器通常将潜在空间Z映射到图像空间(即输入是噪声,输出图像),并不是用真实图像作为输入,这导致训练好的模型无法很好地进行后续图像处理。这里不同的任务的损失稍有不同,但大体上是类似的。,都可以提取相应的空间特征。..

2022-07-15 15:33:59 809

原创 HI-GAN:一种用于真实照片盲去噪的分层生成对抗网络

目录一、相关工作1.1、真实图像的盲去噪1.2、RSGAN二、方法三、模型结构四、实验结果​ 去噪方法可以分为两种:盲去噪和非盲去噪。一般的去噪方法主要是解决高斯噪声分布已知的非盲去噪问题。然而,现实世界的噪声是高度复杂和不可预测的,因为噪声可以有多个来源,如暗电流噪声和热噪声。最先进的dcnn,如FFDNet[47]和DnCNN[46]可以导致非盲去噪的显著改进,但无法完全消除现实世界的盲噪声。这篇文章专注于解决对真实世界的噪声图像进行盲去噪的问题。首先介绍怎么对上述噪声建模:

2022-07-10 22:38:16 2401

原创 Neighbor2Neighbor:从单个噪声图像进行自监督去噪

目录一、相关工作1.1、Noise2Noise二、本文方法——Neighbor2Neighbor2.1、训练图像对的生成2.2、有规律的自监督训练三、实验​ 这篇文章的工作同样是图像去噪,但是本文方法是不需要干净图像的无监督方法。本文工作是受Noise2Noise的启发。首先简要介绍Noise2Noise。 Noise2Noise是一种不需要真实干净图像训练的去噪方法,该方法只需要相同场景的独立噪声图像对。给定同一个地面真实图像x的两个独立的噪声观测值y和z, Noise2Noi

2022-07-09 19:01:08 3229

原创 多层次边缘特征引导的图像去噪网络

目录一、引言二、相关工作三、多层次边缘特征引导网络四、实验结果 回顾以往图像去噪的方法,作者发现大量的工作指出充分利用图像先验可以有效地提高重建图像的质量。事实上,一些图像先验已经被提出用于图像恢复,如TV先验、稀疏先验和边缘先验。其中,边缘先验是最有效、最易获得的先验之一。作为图像的高频特征的关键组成部分,它一直被广泛应用于图像重建任务中。同时,也有研究在CNN模型中引入边缘来指导图像重建或增强重建图像,例如DEGRRN和DCEF。这两种模型都是先对退化图像应用现成的边缘检测器(如Sobel

2022-06-29 23:06:01 2616

原创 DeGAN:通过生成对抗网络去除混合噪声

目录一、引言二、网络及损失三、主要实验结果首先介绍混合噪声: x为无噪声图像,y为其对应的观测噪声版本:n是加性高斯白噪声(AWGN),,v是脉冲噪声(IN)——对像素造成破坏。一般的图像去噪模型只关注前一种噪声。下面介绍一下IN: 假设为图像像素值的变化范围。当一个图像被SPIN损坏时,它的一些像素值是或,当它被RVIN损坏时,它的一些像素值是和之间的随机值。SPIN和RVIN是IN的两种形式。本文关注三种不同类型的混合噪声:(1)、AWGN+SPIN (2)、AWGN+RVI

2022-06-28 22:53:43 3664 2

原创 基于感知损失的改进深度卷积神经网络图像去噪新算法

目录一、算法1.1、网络结构1.2、联合损失函数1.2.1、均方损失 1.2.2、感知损失 二、实验结果 设X表示干净图像,N表示均匀偏差为σ的高斯白噪声,则噪声图像模型定义如下:MP-DCNN的目的是去除噪声图像中的噪声,并尽可能保留图像的边缘信息。联合损失函数的数学表达式为: 其中,右边第一项和第二项分别表示逐像素比较和语义特征比较的损失函数。联合损失函数的实现过程如图3所示。噪声图像Y作为模型的输入,与其他去噪方法不同的是,它们的判别去噪模型是学习映射函数f(Y) = X来估计潜在的干

2022-06-26 22:38:34 1524 1

原创 一种用于图像去噪的分离聚合网络

图像去噪是一种经典的图像恢复任务,其目的是从有噪声的观测中预测出一幅干净的图像。在加性-噪声-破坏假设下,观测模型可表示为: 其中x为干净的图像,n为噪声。 本节将详细介绍所提出的用于图像去噪的分离聚合网络(SANet)。SANet由三个块组成,包括卷积分离块、深度映射块和带聚合块。SANet的架构如图1所示。在SANet中,首先对输入的噪声图像进行卷积分离块。然后,将生成的特征映射中的每个通道视为一个单独的图像带,分别送入后续的深度映射块进行非线性变换。最后,带聚合块将所有映射结果连接为一个

2022-06-26 17:33:56 934

原创 基于先验驱动深度神经网络的图像复原去噪

目录一、引言二、相关工作A、基于去噪的IR方法B、基于深度网络的IR方法三、一种基于去噪的图像恢复算法四、先验驱动深度神经网络的去噪A、DCNN去噪B、整体网络培训五、实验A、消融实验B、图像去噪C、图像去模糊D、图像超分辨率 图像恢复(IR)问题旨在从低质量的观测数据中重建出高质量的图像,从数学上讲,IR问题可以表示为y = Ax+n,其中y和x分别表示退化图像和原始图像,A表示与成像/退化系统相关的退化矩阵,n表示加性噪声。对于A的不同设置,可以表示不同的IR问题。例如,当A是一个单位矩

2022-06-26 11:12:18 1399

原创 多保真度建模的层次回归框架

目录一、概括二、方法2.1. 用于双保真建模的分层回归函数2.1.1. 低保真(LF)模块2.1.2. 数据连接(DC)模块2.1.3. 降维(DR)模块2.1.4. 高保真(HF)模块 2.2. 多保真度建模的递归方法 本文提出了一个用于多保真度建模的分层回归框架,该框架结合了用于双保真度建模的分层回归器和将得到的双保真模型扩展到多保真度情况的递归方法。本节首先介绍用于双保真建模的层次回归函数,然后提出了一种递归方法将得到的双保真模型扩展到多保真模型的情况。符号设置如下:,。目的:学习一个y

2022-06-12 11:09:18 1593 2

原创 GAN-MDF:一种数字双胞胎多保真数据融合方法

目录一、背景及内容概括二、方法2.1、问题及符号设置2.2、生成器和鉴别器2.3、对抗训练策略三、数值实验3.1、不同高保真点尺寸的实验3.2、不同低保真点尺寸的实验 目前的多保真数据融合方法与期望的方法之间仍然存在差距,因为基于插值的模型通常是在对多保真数据进行特定假设的情况下建立的。另一方面,基于学习的模型的训练通常需要相当数量的HF样本才能达到期望的建模精度。尤其是在高维场景中,由于需要确定的权重更多,对HF样本量的要求更高。 本文提出了一个生成对抗网络的多保真数据融合问

2022-06-07 09:58:23 965

原创 基于卷积神经网络的多保真数据聚合

目录一、方法二、实验 三、讨论3.1. 卷积层效应3.2. 梯度信息的影响 让和分别表示低保真度和高保真度生成模型。考虑两个模型之间的一般关系如下: (1) 其中是一个未知函数,它捕捉了低保真量和高保真量之间的关

2022-06-04 22:39:15 1779 3

原创 VAE-GAN联合模型:Autoencoding beyond pixels using a learned similarity metric

一、背景深度架构允许广泛的判别模型扩展到大型和多样化的数据集,然而,生成模型仍然存在图像和声音等复杂数据分布的问题。在这项工作中,本文表明,目前使用的相似性度量对学习良好的生成模型造成了障碍,可以通过使用学习的相似性度量来改进生成模型。当学习模型如变分自编码器(VAE)时,核心是选择相似性度量,因为它通过重建误差目标提供训练信号的主要部分。对于这个任务,像平方误差这样的元素度量是默认值。元素度量很简单,但不太适合图像数据,因为它们不能模拟人类视觉感知的属性。例如,一个...

2022-05-30 15:32:44 2263 1

原创 A composite neural network that learns from multi-fidelitydata: Application to function approximati

一、背景 深度学习的快速发展也影响了物理系统的计算建模。通常,复杂物理系统的优化需要大量的高保真数据集,这可能会导致计算成本过高。另一方面,不充分的高保真数据会导致不准确的近似和可能错误的设计。多保真建模已经被证明是高效和有效的,通过利用低保真和高保真数据在不同的应用中实现高精度。在多保真度建模框架中,假设精确但昂贵的高保真度数据是稀缺的,而廉价且不准确的低保真度数据是丰富的。例如,利用一些很难获得的实验测量数据,结合运行计算模型获得的合成数据。在很多情况下,低保真数据可以为高保真数据提...

2022-05-29 12:16:16 1158

原创 regularizing image classification neuralnetworks with partial differential equations

一、背景人们已经发现,将神经网络和微分方程结合起来是可能的。首先介绍一种开创性的神经常微分方程(神经ODE)研究工作:考虑图1(a)中的一般架构,是学习近似的神经网络,其中h(t)是层(或时间)t上的隐藏向量。因此,神经网络由ODE系统描述,每个ODE系统描述一个隐藏元素的动态。虽然神经ode有许多首选特征,但它们也有以下限制:(1)、神经ode可以将t解释为连续变量,我们可以在任意层(或时间)l有隐藏向量,其中是...

2022-05-27 21:18:05 187

原创 Physics-Integrated Variational Autoencoders forRobust and Interpretable Generative Modeling

一、背景数据驱动建模通常与理论驱动建模相对,但它们的集成也被认为是一种重要的方法,称为灰盒或混合建模。机器学习中的灰盒/混合建模在学习鲁棒模型方面具有相当大的前景,具有改进的外推能力,超出了它们在训练期间接触到的分布。此外,就模型可解释性而言,它可以带来显著的好处,因为模型的部分在语义上基于具体的领域知识。将物理模型集成到机器学习中已经在各种情况下被考虑过(例如[44,40]和本文的第4节),但现有的大多数研究都集中在预测或预测任务上,不能直接适用于其他任务。更重要的...

2022-05-21 17:39:48 429 1

原创 A High-Efficient Hybrid Physics-Informed NeuralNetworks Based on Convolutional Neural Network

译:基于卷积神经网络的高效混合物理信息神经网络摘要:本文开发了一个用于偏微分方程(PDEs)的混合物理信息神经网络(hybrid PINN)。作者借鉴了卷积神经网络(CNN)和有限体积方法的思想。与物理信息神经网络(PINN)及其变体不同,本文提出的方法使用微分算子的近似来求解偏微分方程,而不是使用自动微分(AD)。本文的主要贡献是采用局部拟合的方法给出近似。结果证明,本文的方法具有收敛速度。这也将避免神经网络给出错误预测的问题,这在PINN中有时会发生。据作者所说,这是机器学习PDE求解器具有收敛速度

2022-05-05 13:31:51 1506

原创 PC-GAIN文献总结

2021-12-11 17:49:53 2295

原创 文献‘‘Generative Adversarial Nets‘‘总结

目录1、摘要2、Adversarial Nets3、理论结果4、实验5、实验结果6、代码结果1、摘要 本文提出了一个通过对抗性过程来估计生成模型的新框架, 在这个框架中, 同时训练两个模型:生成模型G捕捉数据分布, 判别模型D估计样本来自训练数据而不是来自G的概率. G的训练过程是最大化D出错的概率. 这个框架对应于一个极大极小的双人博弈. 最优的情况是, G恢复训练数据的分布, D处处为0.5. 在G和D由多层感知器定义的情况下, 可以用反向传播训练整个系统....

2021-11-30 21:02:25 1592

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除