决策树

本文代码摘自书籍《机器学习实战》,我仅稍加改正和整理,详细代码和数据集见GitHub

决策树概述

优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。

信息增益(information gain)和熵(entropy)

信息增益和熵是理解决策树时的重要概念(当然也可以使用其他度量方法)

香农熵的计算

具体计算公式可百度。直接给出计算香农熵(熵)的代码。

# 训练集的最后一列是标签
def calcShannonEnt(dataset):  # 计算信息熵
    Numdataset = len(dataset)

	#统计每种标签的样本数
    classLabel = {}
    for i in range(Numdataset):
        currentLabel = dataset[i][-1]
        classLabel[currentLabel] = classLabel.get(currentLabel, 0) + 1
    
    #计算香农熵
    shannonEnt = 0.0
    for key in classLabel:
        prob = float(classLabel[key]) / Numdataset
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

计算出来的熵越高,说明混合的数据也越多,数据越“复杂”。

划分数据集

学习了如何度量数据集的无序程度,分类算法除了需要测量信息熵,还需要划分数据集,度量花费数据集的熵,然后判断按照哪个特征划分数据集是最好的划分方式。

# 按照给定特征划分数据集
def splitDataSet(dataSet, axis, value):  
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reduceFeatVec = featVec[:axis]
            reduceFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reduceFeatVec)
    return retDataSet

找到最好的特征划分点

如何才算最好,这里就需要了解信息增益的概念,在决策树中,信息增益表示在按特征划分前后熵的减少量,熵减少量越大,表示按照该特征划分数据更准确,数据更“纯”,我们仅需要分别计算数据按照不同的特征划分的信息增益,信息增益最大的就是我们应选的最佳特征。

接下来我们将遍历整个数据集,循环计算香农熵和splitDataSet()函数,找到最好的特征划分方式。

 # 找到信息增益最大的切分属性
def chooseBestFeatureToSplit(dataset): 
    numFeatures = len(dataset[0]) - 1
    baseEntropy = calcShannonEnt(dataset)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
		#获得样本第i个特征的所有可能取值
        featList = [example[i] for example in dataset]
        uniqueVals = set(featList)
        
        #计算信息增益
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataset, i, value)
            prob = len(subDataSet) / float(len(dataset))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy

        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i

	#返回最佳划分特征的索引值
    return bestFeature

递归构建决策树

在构建决策树时,可能会出现已经处理了数据集的所有特征,但是类标签依然不是唯一的,此时我们需要决定如何定义该叶子节点,在这种情况下,我们通常会采用多数表决的方法决定该叶子节点的分类。

 # 计算主要类
def majorityCnt(classList): 
    classCount = {}
    for vote in classList:
        classList[vote] = classList.get(vote, 0) + 1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

万事俱备,接下来我们来递归创建树(这里也相对较难理解)!

# 创建决策树
def createTree(dataSet, labels):  
    classList = [example[-1] for example in dataSet]

	#如果数据集的标签唯一,则直接返回该标签
    if classList.count(classList[0]) == len(classList):
        return classList[0]
	
	# 如果已经处理完了数据的所有特征,则多数表决
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    del (labels[bestFeat])
    
    myTree = {bestFeatLabel: {}}
    
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
		#递归
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree

图形化决策树

我们得到的决策树是用字典表示的,当树的层次较深时无疑是十分晦涩难懂的,这时我们就需要用图形的方式来展示我们的结果。这里直接上代码了 (别怕,我也不懂^_^,直接用就行了),将代码贴在一个文件,如我贴在了plottree.py

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")


def retrieveTree(i):
    listOfTrees = [{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                   {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                   ]
    return listOfTrees[i]


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()


def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords= \
        'axes fraction', xytext=centerPt, textcoords='axes fraction', \
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)


def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    seconDict = myTree[firstStr]
    for key in seconDict.keys():
        if type(seconDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(seconDict[key])
        else:
            numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth

def plotMidText(cntrPt,parentPt,txtString):
    xMid=(parentPt[0]-cntrPt[0])/2.0+cntrPt[0]
    yMid=(parentPt[1]-cntrPt[1])/2.0+cntrPt[1]
    createPlot.ax1.text(xMid,yMid,txtString)

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

至于具体如何使用,书籍提供了少量的数据,数据格式如下:在这里插入图片描述

#import刚刚写的文件
import plottree

#处理数据
fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']

#创建树
lensesTree = createTree(lenses, lensesLabels)

#绘制,仅仅需要这一句,传入我们的字典树,是不是很简单那
plottree.createPlot(lensesTree)

结果如下:
在这里插入图片描述

测试算法

目前为止我们已经创建好了决策树,当然我们要确定决策树是否可用于实际问题,接下来验证算法的实际效果。编写个函数,它的功能是确定新的样本的分类。

# inputTree--决策树,featLabels--特征向量,testVec--新的未分类样本
def classify(inputTree, featLabels, testVec):
    firstStr = list(inputTree.keys())[0]
    secondDict = inputTree[firstStr]

	#得到特征在特征向量中的索引
    featIndex = featLabels.index(firstStr)

	#遍历该特征的所有取值
    for key in secondDict.keys():
        if testVec[featIndex] == key:
        	#如果该取值还可以继续划分,则继续递归
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            #否则说明已经抵达叶节点,直接返回分类标签
            else:
                classLabel = secondDict[key]
    return classLabel

classify函数可以确定新的样本的分类,这样我们就可以通过比较classify函数的划分结果与实际结果的区别来计算决策树的分类准确性。

决策树的存储

构造决策树是很耗时的任务,因为它要多次遍历所有的特征、样本,即使处理很小的数据集。但是一旦决策树构建完成,接下来的分类任务就会变得十分轻松。因此在实际应用中,为了节省计算时间,我们只希望构建一次树,·这就涉及决策树的存储了。这里需要使用Python模块pickle序列化对象:

# 存储树,inputTree--决策树,filename--文件名
def storeTree(inputTree, filename):
    import pickle
    fw = open(filename, 'w')
    pickle.dump(inputTree, fw)
    fw.close()

# 加载树
def grabTree(filename):
    import pickle
    fr = open(filename)
    return pickle.load(fr)

总结

相比大多数分类算法,决策树易于理解和实现,不需要使用者了解很多的背景知识,这同时是它的能够直接体现数据的特点。

但是决策树对连续性的字段比较难预测,本文并没有涉及连续数值特征,且没有对决策树进行剪枝等处理,容易造成过拟合。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值