深度学习
立志成为一名业内大牛
Ruanes
一名有理想的大三本科生
展开
-
TFF initialize() 报错RuntimeError: This event loop is already running
原因因为asyncio设计上不允许事件循环被嵌套,这就造成了一个问题:当一个事件循环已经在运行,就不能再运行任务并等待结果。如果这样做就会报错:“RuntimeError: This event loop is already running”。当在Google Colab或者Jupyter上运行TFF官方教程代码state = iterative_process.initialize()就会产生这个问题。解决方法安装nest_asyncio库nest_asyncio库就是专门为解决这个问题而诞原创 2020-11-23 23:45:21 · 606 阅读 · 0 评论 -
手把手教你安装Tensorflow cpu版
最近在实验室的电脑安装tensorflow,因为电脑比较差,暂时还没有英伟达的显卡,就先安装tensorflow-cpu版本先用着,所以这是篇安装tensorflow cpu版本的教程。2020年5月31日安装成功!准备工作安装Anaconda这步并不是必须的,可以跳过,但是在虚拟环境中安装tensorflow更易于包管理,避免不必要的版本冲突这里我嫌Anaconda太杂就直接安装Miniconda了,安装过程一路next,安装完后记得配置环境变量。下载地址检查是否安装完成,命令行输入co原创 2020-05-31 11:06:56 · 4625 阅读 · 1 评论 -
tf.GradientTape自动微分机制
tf.GradientTape是可以记录Tensorflow中自动微分的操作,如果计算操作在tf.GradientTape下执行,并且至少有一个输入被“监视”,那么该操作就会被记录。使用方法:import tensorflow as tfx = tf.Variable(0.0, dtype=tf.float32) # 变量Variable将会被自动“监视”# 常量a = tf.constant(1.0, dtype=tf.float32)b = tf.constant(-2.0, dtype=原创 2020-05-11 22:00:57 · 474 阅读 · 0 评论 -
句法分析和依存句法分析(Python实现)
文章目录环境使用Reference环境Python3安装nltk库安装在cmd中输入pip install nltk,如果显示pip不是内部或外部命令,那就是未配置环境变量,自行百度。下载StanfordParser下载好进行解压,得到文件夹stanford-parser-full-2018-10-17,文件夹的内容如下:解压文件夹中的stanford-parser-3.9....原创 2020-05-05 16:57:14 · 5362 阅读 · 2 评论 -
解决using a `tf.Tensor` as a Python `bool` is not allowed
label = tf.constant(1, tf.int8) if tf.cond(tf.strings.regex_full_match(img_path, ".*/smile/.*") else tf.constant(0, tf.int8))在运行这段代码时报错:OperatorNotAllowedInGraphError: using a tf.Tensor as a Pyth...原创 2020-05-01 22:14:40 · 19580 阅读 · 0 评论 -
Keras保存或加载模型
在利用大量数据训练模型时,往往需要用多个小时、天、周甚至月。我们希望训练完后能将模型保存到本地磁盘。Keras为我们提供了两种方法将模型结构(model structure )和权重(weights)分开保存和加载。模型结构可以被保存为两种格式,分别是JSON和YAML格式,权重weights将被保存为HDF5格式,下面我将以JSON的方式保存模型结构,直接上代码:# MLP for Pim...原创 2020-04-25 16:22:29 · 217 阅读 · 0 评论 -
categorical_crossentropy和sparse_categorical_crossentropy的区别
categorical_crossentropy主要用于目标结果是独热编码(one-hot encoding),比如:[1,0,0],[0,1,0],[0,0,1]sparse_categorical_crossentropy用于目标结果是个整数(integer),如1,2,3.两者计算公式是相同的,所以两者的准确性基本没有差别。Reference1.https://jovianli...原创 2020-04-25 15:46:43 · 1623 阅读 · 0 评论 -
ImageDataGenerator使用
最近发现了一个好用的类ImageDataGenerator,可以使用它完成以下工作:Accepting a batch of images used for training.Taking this batch and applying a series of random transformations to each image in the batch (including rando...原创 2020-04-24 23:02:40 · 1274 阅读 · 0 评论 -
if(logs.get('acc')>0.6) 报错
今天学习tensorflow回调函数时,遇到了这个错误,经过纠正后代码如下:import tensorflow as tfprint(tf.__version__)class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy...原创 2020-04-04 21:27:36 · 735 阅读 · 1 评论 -
Google Colab的使用
最近在用SVM做文本分类,发现自己的笔记本根本跑不动啊,于是开始尝试使用Google提供的免费GPU算力。主要使用步骤如下:将本地的ipynb等文件拷贝到谷歌云盘(Google Drive)上。右键文件,以Google Colab的方式打开。Google Colab实际上是给我们分配了一台配有GPU的远程服务器,在这上面我们无法很轻松的操作本地文件,因此我们需要将谷歌云盘作为Colab的外...原创 2020-03-27 23:34:52 · 592 阅读 · 0 评论 -
张量的基本操作
文章目录改变张量的形状增加和删除维度增加维度删除维度交换维度改变张量的形状tf.reshape(tensor, shape)shape参数=-1:表示自动推导出长度增加和删除维度增加维度tf.expand_dims(input, axis)增加的维度在1的轴上增加的维度在0的轴上增加最后的一个维度:删除维度tf.squeeze(input, axis)只能删除...原创 2020-03-25 15:33:03 · 1204 阅读 · 1 评论 -
Tensorflow张量
文章目录TensorFlow框架特性张量(Tensor)创建Tensor对象张量的numpy()方法tf.cast()函数TensorFlow框架特性多种环境支持可运行于移动设备、个人计算机、服务器、集群等云端、本地、浏览器、移动设备、嵌入式设备支持分布式模式TensorFlow会自动检测GPU和CPU,并充分利用它们并行、分布的执行简洁高效构建、训练、迭代模型:E...原创 2020-03-24 23:04:25 · 222 阅读 · 0 评论 -
Logistic回归
本文代码摘自书籍《机器学习实战》,我仅稍加改正和整理。文章目录Logistic回归最佳回归系数的确定算法思路算法改进Logistic回归优点:计算代价不高,易于理解和实现。缺点:容易欠拟合,分类精度可能不高。最佳回归系数的确定算法思路这里使用的梯度上升找到最佳参数。伪代码如下:每个回归系数初始化为1重复R次: 计算整个数据集的梯度 使用alpha*gradient更新回归系...原创 2020-03-24 20:52:16 · 436 阅读 · 0 评论 -
Pillow图像处理库
文章目录导入Image模块打开图像保存图像基本属性显示图像图像色彩转换颜色通道的分离与合并将图像转换为numpy数组缩放尺寸图像翻转图像裁剪导入Image模块from PIL import Image打开图像img = Image.open('earth.jpg')保存图像# 改变文件名的后缀,就可以转换图像格式img.save('new_earth.jpg')基本属性pr...原创 2020-03-22 23:33:52 · 270 阅读 · 0 评论 -
基于概率论的分类方法:朴素贝叶斯
本文代码摘自书籍《机器学习实战》,我仅稍加改正和整理。文章目录朴素贝叶斯概述示例:过滤垃圾邮件文本预处理朴素贝叶斯概述优点:在数据较少的情况下仍然有效,可以处理多类别问题。缺点:对于输入数据的准备方式较为敏感具体贝叶斯的数学原理自行百度,下面代码实战:示例:过滤垃圾邮件机器学习的一个重要应用就是文档的自动分类,依据文本的内容,如出现的单词进行分类,。文本预处理我用先编写loadD...原创 2020-03-21 18:51:02 · 407 阅读 · 0 评论 -
OpenCV基础
读入图像reval=cv2.imread(文件名[,显示控制参数])常见的参数有cv2.IMREAD_GRAYSCALE,cv2.IMREAD_UNCHANGED,cv2.IMREAD_COLOR显示图像cv2.imshow(窗口名,reval)设置图像窗口显示的时间cv2.waitKey([,delay])delay的取值有:delay>0,等待delay毫秒de...原创 2020-03-20 22:18:12 · 192 阅读 · 0 评论 -
决策树
本文代码摘自书籍《机器学习实战》,我仅稍加改正和整理。文章目录决策树概述信息增益(information gain)和熵(entropy)香农熵的计算划分数据集找到最好的特征划分点递归构建决策树图形化决策树测试算法决策树的存储总结决策树概述优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。信息增益(information g...原创 2020-03-20 18:06:31 · 267 阅读 · 0 评论 -
k-近邻算法
本文代码摘自书籍《机器学习实战》,我仅稍加改正和整理。文章目录k-近邻算法概述示例1:在约会网站上使用k-近邻算法获得数据归一化数值kNN算法实现测试算法示例2:手写识别系统k-近邻算法概述优点:精度搞、对异常值不敏感、无数据输入假定。缺点:计算复杂度高、空间复杂度高。示例1:在约会网站上使用k-近邻算法收集数据:提供文本文件。准备数据:使用Python解析文本文件。分析数据:使...原创 2020-03-19 18:42:58 · 236 阅读 · 0 评论 -
报错from scipy.misc import imread,imsave,imresize
尝试了网上无数种方法后,终于解决,贴上代码from imageio import imwrite,imreadimport numpy as npfrom PIL import Imageimg=imread('google.jpg')print(img.dtype,img.shape)img_tinted=img*[1,1/0.95,1/0.9]img_tinted = np.ar...原创 2020-02-10 11:46:33 · 3782 阅读 · 0 评论