多兵种直瞄武器交战的Lanchester方程

预备知识

多兵种直瞄武器交战的Lanchester方程,以下简称为多-Lanchester方程为
{ x ˙ = − ( B ∗ Ψ ) y = − H y y ˙ = − ( A ∗ Φ ) x = − G x (1) \left\{\begin{matrix} \dot{x} = -(B*\mathit{\Psi} )y = -Hy\\ \dot{y} = -(A*\mathit{\Phi} )x = -Gx \end{matrix}\right. \tag{1} {x˙=(BΨ)y=Hyy˙=(AΦ)x=Gx(1)
其中,
{ x = ( x 1 , ⋯   , x m ) T y = ( y 1 , ⋯   , y n ) T \left\{\begin{matrix} x = (x_1,\cdots,x_m)^\mathrm{T} \\ y = (y_1,\cdots,y_n)^\mathrm{T} \end{matrix}\right. {x=(x1,,xm)Ty=(y1,,yn)T
是双方的实力。

{ Φ = [ ϕ 11 ⋯ ϕ 1 m ⋮ ⋱ ⋮ ϕ n 1 ⋯ ϕ n m ] Ψ = [ ψ 11 ⋯ ψ 1 m ⋮ ⋱ ⋮ ψ n 1 ⋯ ψ n m ] \left\{\begin{matrix} \Phi = \begin{bmatrix} \phi_{11} & \cdots & \phi _{1m}\\ \vdots & \ddots & \vdots \\ \phi_{n1} & \cdots & \phi_{nm} \end{bmatrix} \\ \Psi = \begin{bmatrix} \psi_{11} & \cdots & \psi _{1m}\\ \vdots & \ddots & \vdots \\ \psi_{n1} & \cdots & \psi_{nm} \end{bmatrix} \end{matrix}\right. Φ=ϕ11ϕn1ϕ1mϕnmΨ=ψ11ψn1ψ1mψnm
上式双方的火力分配矩阵, Φ \mathit{\Phi} Φ Ψ \mathit{\Psi} Ψ 是列和不超过1的非负矩阵。
{ A = [ a 11 ⋯ a 1 m ⋮ ⋱ ⋮ a n 1 ⋯ a n m ] B = [ b 11 ⋯ b 1 m ⋮ ⋱ ⋮ b n 1 ⋯ b n m ] \left\{\begin{matrix} A = \begin{bmatrix} a_{11} & \cdots & a _{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix} \\ B = \begin{bmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nm} \end{bmatrix} \end{matrix}\right. A=a11an1a1manmB=b11bn1b1mbnm
上式是双方打击对方的毁伤系数矩阵,AB是非负矩阵;“*”为矩阵对应元素相乘(注意:不是矩阵乘法,是矩阵内对应位置元素相乘)。

于此处再给出一个定理

λ 2 ( λ > 0 ) \lambda^2(\lambda>0) λ2(λ>0) 是矩阵 GH 和矩阵 HG 的特征值, u T > 0 u^{\mathrm{T}}>0 uT>0HG 关于 λ \lambda λ 的左特征向量,那么有

v T = 1 λ u T H , U = u T x , V = v T y v^\mathrm{T}=\frac{1}{\lambda}u^\mathrm{T}H,U=u^\mathrm{T}x,V=v^\mathrm{T}y vT=λ1uTH,U=uTx,V=vTy

XY满足微分方程
{ U ˙ = − λ V V ˙ = − λ U (2) \left\{\begin{matrix} \dot{U} = -\lambda V \\ \dot{V} = -\lambda U \end{matrix}\right. \tag{2} {U˙=λVV˙=λU(2)
注:全文的公式使用LaTex公式编辑器编辑而成

数值实例

例1

设甲方只有一类作战单位,乙方有两类作战单位,双方毁伤系数矩阵为
A = [ 7 1 ] , b = [ 7 1 ] , A=\begin{bmatrix} 7\\ 1 \end{bmatrix}, b=\begin{bmatrix} 7& 1 \end{bmatrix}, A=[71],b=[71],
双方实力向量初值为
x 1 ( 0 ) = 200 , y 1 ( 0 ) = 100 , y 2 ( 0 ) = 100. x_1(0)=200,y_1(0)=100,y_2(0)=100. x1(0)=200,y1(0)=100,y2(0)=100.

(1)情况1

甲方分配一半的力量用于攻击 Y 1 Y_1 Y1 ,另一半力量用于攻击 Y 2 Y_2 Y2 ,即令
Φ = [ 1 2 1 2 ] . \Phi=\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}. Φ=[2121].
同时,假定乙方两类作战单位均全力以赴攻击甲方,即
Ψ = [ 1 1 ] . \Psi=\begin{bmatrix} 1& 1 \end{bmatrix}. Ψ=[11].
于是
G = A ∗ Φ = [ 1 2 1 2 ] , H = B ∗ Ψ = [ 1 7 ] , H G = [ 1 2 + 49 2 ] = [ 25 ] G=A*\Phi=\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, H=B*\Psi=\begin{bmatrix} 1& 7 \end{bmatrix}, HG=\begin{bmatrix} \frac{1}{2}+\frac{49}{2} \end{bmatrix}= \begin{bmatrix} 25 \end{bmatrix} G=AΦ=[2121],H=BΨ=[17],HG=[21+249]=[25]
其特征值 λ 2 = 25 \lambda^2 = 25 λ2=25,即 λ = 5 \lambda=5 λ=5。令 u = [ 1 ] u=\begin{bmatrix}1\end{bmatrix} u=[1],则
v T = 1 2 u T H = 1 5 [ 1 ] [ 1 7 ] = [ 1 5 , 7 5 ] v^{\mathrm{T}}=\frac{1}{2}u^{\mathrm{T}}H=\frac{1}{5}\begin{bmatrix}1\end{bmatrix}\begin{bmatrix}1&7\end{bmatrix}=\begin{bmatrix}\frac{1}{5},\frac{7}{5}\end{bmatrix} vT=21uTH=51[1][17]=[51,57]
于是
{ U ( 0 ) = u T x ( 0 ) = [ 1 ] [ 200 ] = 200 V ( 0 ) = v T y ( 0 ) = [ 1 5 7 5 ] [ 100 100 ] = 160 \left\{\begin{matrix} U(0)= u^\mathrm{T}x(0)=\begin{bmatrix}1\end{bmatrix}\begin{bmatrix}200\end{bmatrix}=200 \\ V(0)= v^\mathrm{T}y(0)=\begin{bmatrix}\frac{1}{5}&\frac{7}{5}\end{bmatrix}\begin{bmatrix}100\\100\end{bmatrix}=160 \end{matrix}\right. U(0)=uTx(0)=[1][200]=200V(0)=vTy(0)=[5157][100100]=160
可以看出, U ( 0 ) = 200 > V ( 0 ) = 160 U(0)=200>V(0)=160 U(0)=200>V(0)=160,从作战指数来看,甲方占据优势。

下面再来求解Lanchester方程 ( 1 ) (1) (1),此时方程 ( 1 ) (1) (1) 具体化为
{ x ˙ 1 = − y 1 − 7 y 2 , y ˙ 1 = − 1 2 x 1 , y ˙ 1 = − 7 2 x 1 , (3a) \left\{\begin{matrix} \dot x_1 = -y_1-7y_2,\\ \dot y_1 = -\frac{1}{2}x_1,\\ \dot y_1 = -\frac{7}{2}x_1, \end{matrix}\right. \tag{3a} x˙1=y17y2,y˙1=21x1,y˙1=27x1,(3a)
下面给出方程 ( 3 ) (3) (3) 的解法,防止自己以后忘记

* 求解方法

注:这里的解法参考矩阵论《函数矩阵的微分和积分》部分

根据方程 ( 2 ) (2) (2),把 U U U V V V 视作函数矩阵的两个变量,又因为特征值 λ = 5 \lambda = 5 λ=5 ,得到
A = [ 0 − 5 − 5 0 ] A=\begin{bmatrix} 0 & -5\\ -5 & 0 \end{bmatrix} A=[0550]
该系数矩阵的特征方程为
d e t ( λ I − A ) = ( λ + 5 ) ( λ − 5 ) det(\lambda I-A)=(\lambda+5)(\lambda-5) det(λIA)=(λ+5)(λ5)
r ( λ ) = a + b λ r(\lambda)=a+b\lambda r(λ)=a+bλ,则有
{ r ( 5 ) = a + 5 b = e − 5 t r ( − 5 ) = a − 5 b = e 5 t (4) \left\{\begin{matrix} r(5)=a+5b=e^{-5t} \\ r(-5)=a-5b=e^{5t} \end{matrix}\right. \tag{4} {r(5)=a+5b=e5tr(5)=a5b=e5t(4)
解出 ( 4 ) (4) (4) 式,得到
{ a = 1 2 ( e 5 t + e − 5 t ) b = 1 10 ( e 5 t − e − 5 t ) \left\{\begin{matrix} a=\frac{1}{2}(e^{5t}+e^{-5t}) \\ b=\frac{1}{10}(e^{5t}-e^{-5t}) \end{matrix}\right. {a=21(e5t+e5t)b=101(e5te5t)
按照公式 e A t = a I + b A e^{At}=aI+bA eAt=aI+bA,得到
e A t = a I + b A = [ e 5 t + e − 5 t 2 0 0 e 5 t + e − 5 t 2 ] + [ 0 − ( e 5 t − e − 5 t ) 2 − ( e 5 t − e − 5 t ) 2 0 ] = [ e 5 t + e − 5 t 2 − ( e 5 t − e − 5 t ) 2 − ( e 5 t − e − 5 t ) 2 e 5 t + e − 5 t 2 ] e^{At}=aI+bA=\begin{bmatrix} \frac{e^{5t}+e^{-5t}}{2} & 0 \\ 0 & \frac{e^{5t}+e^{-5t}}{2} \end{bmatrix} + \begin{bmatrix} 0 & -\frac{(e^{5t}-e^{-5t})}{2} \\ -\frac{(e^{5t}-e^{-5t})}{2} & 0 \end{bmatrix}=\begin{bmatrix} \frac{e^{5t}+e^{-5t}}{2} & -\frac{(e^{5t}-e^{-5t})}{2} \\ -\frac{(e^{5t}-e^{-5t})}{2} & \frac{e^{5t}+e^{-5t}}{2} \end{bmatrix} eAt=aI+bA=[2e5t+e5t002e5t+e5t]+[02(e5te5t)2(e5te5t)0]=[2e5t+e5t2(e5te5t)2(e5te5t)2e5t+e5t]
例1开始给出了初值 U ( 0 ) = 200 U(0) = 200 U(0)=200 V ( 0 ) = 160 V(0) = 160 V(0)=160,带入公式 e A t ⋅ [ U ( 0 ) V ( 0 ) ] e^{At} \cdot \begin{bmatrix} U(0) \\ V(0) \end{bmatrix} eAt[U(0)V(0)],得到
e A t ⋅ [ 200 160 ] = { 100 e 5 t + 100 e − 5 t − 80 e 5 t + 80 e − 5 t − 100 e 5 t + 100 e − 5 t + 80 e 5 t − 80 e − 5 t = { U ( t ) = 180 e − 5 t + 20 e 5 t V ( t ) = 180 e − 5 t − 2 0 5 t e^{At} \cdot \begin{bmatrix} 200 \\ 160 \end{bmatrix}= \left\{\begin{matrix} 100e^{5t} + 100e^{-5t} - 80e^{5t} + 80e^{-5t} \\ -100e^{5t} + 100e^{-5t} + 80e^{5t} - 80e^{-5t} \end{matrix}\right.= \left\{\begin{matrix} U(t)=180e^{-5t} + 20e^{5t} \\ V(t)=180e^{-5t} - 20^{5t} \end{matrix}\right. eAt[200160]={100e5t+100e5t80e5t+80e5t100e5t+100e5t+80e5t80e5t={U(t)=180e5t+20e5tV(t)=180e5t205t
最终得到
{ U ( t ) = x 1 ( t ) = 180 e − 5 t + 20 e 5 t V ( t ) = 1 5 y 1 ( t ) + 7 5 y 2 ( t ) = 180 e − 5 t − 2 0 5 t (5) \left\{\begin{matrix} U(t)=x_1(t)=180e^{-5t} + 20e^{5t} \\ V(t)=\frac {1}{5}y_1(t)+\frac{7}{5}y_2(t)=180e^{-5t} - 20^{5t} \end{matrix}\right. \tag{5} {U(t)=x1(t)=180e5t+20e5tV(t)=51y1(t)+57y2(t)=180e5t205t(5)
由方程 ( 3 ) (3) (3) 可知,
d d t ( 7 y 1 ( t ) − y 2 ( t ) ) = 7 y ˙ 1 − y ˙ 2 = 0 \frac{\mathrm{d}}{\mathrm{d}t}(7y_1(t)-y_2(t))=7\dot y_1-\dot y_2=0 dtd(7y1(t)y2(t))=7y˙1y˙2=0

7 y 1 ( t ) − y 2 ( t ) = 7 y 1 ( 0 ) − y 2 ( 0 ) = 600 (6) 7y_1(t) - y_2(t) = 7y_1(0) - y_2(0) = 600 \tag{6} 7y1(t)y2(t)=7y1(0)y2(0)=600(6)
取方程 ( 5 ) (5) (5) 和方程 ( 6 ) (6) (6) 得到
{ y 1 ( t ) + 7 y 2 ( t ) = 900 e − 5 t − 100 e 5 t 7 y 1 ( t ) − y 2 ( t ) = 600 ⇒ { y 1 ( t ) + 7 y 2 ( t ) = 900 e − 5 t − 100 e 5 t 49 y 1 ( t ) − 7 y 2 ( t ) = 4200 ⇒ 50 y 1 ( t ) = 900 e − 5 t − 100 e 5 t + 4200 ⇒ y 1 ( t ) = 18 e − 5 t − 2 e 5 t + 84 \left\{\begin{matrix} y_1(t)+7y_2(t)=900e^{-5t}-100e^{5t} \\ 7y_1(t)-y_2(t)=600 \end{matrix}\right. \\ \Rightarrow \left\{\begin{matrix} y_1(t)+7y_2(t)=900e^{-5t}-100e^{5t} \\ 49y_1(t)-7y_2(t)=4200 \end{matrix}\right. \\ \Rightarrow 50y_1(t)=900e^{-5t}-100e^{5t}+4200 \\ \Rightarrow y_1(t)=18e^{-5t}-2e^{5t}+84 {y1(t)+7y2(t)=900e5t100e5t7y1(t)y2(t)=600{y1(t)+7y2(t)=900e5t100e5t49y1(t)7y2(t)=420050y1(t)=900e5t100e5t+4200y1(t)=18e5t2e5t+84
得到 y 1 ( t ) y_1(t) y1(t)后,代回方程 ( 5 ) (5) (5)得到
18 e − 5 t − 2 e 5 t + 84 + 7 y 2 ( t ) = 900 e − 5 t − 10 0 5 t ⇒ 7 y 2 ( t ) = 882 e − 5 t − 9 8 5 t − 84 ⇒ y 2 ( t ) = 126 e − 5 t − 1 4 5 t − 12 18e^{-5t}-2e^{5t}+84+7y_2(t)=900e^{-5t}-100^{5t} \\ \Rightarrow 7y_2(t)=882e^{-5t}-98^{5t}-84 \\ \Rightarrow y_2(t)=126e^{-5t}-14^{5t}-12 18e5t2e5t+84+7y2(t)=900e5t1005t7y2(t)=882e5t985t84y2(t)=126e5t145t12
最后结合一下,得到
{ y 1 ( t ) = 18 e − 5 t − 2 e 5 t + 84 y 2 ( t ) = 126 e − 5 t − 1 4 5 t − 12 (7) \left\{\begin{matrix} y_1(t)=18e^{-5t}-2e^{5t}+84 \\ y_2(t)=126e^{-5t}-14^{5t}-12 \end{matrix}\right. \tag{7} {y1(t)=18e5t2e5t+84y2(t)=126e5t145t12(7)
于是当战斗进行到某时刻 T T T Y 2 Y_2 Y2类作战单位被完全消灭,即
y 2 ( t ) = 126 e − 5 t − 14 e 5 t − 12 = 0 (8) y_2(t)=126e^{-5t}-14e^{5t}-12=0 \tag{8} y2(t)=126e5t14e5t12=0(8)

* 求解方法

e 5 T = t e^{5T}=t e5T=t ,则 e 10 T = t 2 e^{10T}=t^2 e10T=t2,方程 ( 8 ) (8) (8) 左右两边同时乘以 e 5 T e^{5T} e5T,得到
126 − 14 t 2 − 12 t = 0 ⇒ 7 t 2 + 6 t − 63 = 0 ⇒ t = − 6 ± 36 + 28 × 63 14 > 0 ⇒ t = 15 2 + 3 7 ⇒ e 5 T = 15 2 + 3 7 126-14t^2-12t=0 \\ \Rightarrow 7t^2+6t-63=0 \\ \Rightarrow t=\frac {-6\pm\sqrt{36+28\times63}}{14} >0 \\ \Rightarrow t = \frac {15\sqrt{2}+3}{7} \\ \Rightarrow e^{5T}= \frac {15\sqrt{2}+3}{7} 12614t212t=07t2+6t63=0t=146±36+28×63 >0t=7152 +3e5T=7152 +3
t = 15 2 + 3 7 t = \frac {15\sqrt{2}+3}{7} t=7152 +3 代回方程 ( 8 ) (8) (8) ,得到
126 e − 5 T − 30 2 + 6 − 12 = 0 ⇒ 126 e − 5 T = 30 2 − 6 ⇒ e − 5 T = 5 2 + 1 21 126e^{-5T}-30\sqrt{2}+6-12=0 \\ \Rightarrow 126e^{-5T}=30\sqrt{2}-6 \\ \Rightarrow e^{-5T}=\frac {5\sqrt{2}+1}{21} 126e5T302 +612=0126e5T=302 6e5T=2152 +1

通过上面的解法,解此代数方程可求得
e 5 t = 15 2 + 3 7 , e − 5 t = 5 2 + 1 21 e^{5t}=\frac {15\sqrt{2}+3}{7},e^{-5t}=\frac {5\sqrt{2}+1}{21} e5t=7152 +3,e5t=2152 +1
从而
{ x 1 ( T ) = 180 5 2 + 1 21 + 20 15 2 + 3 7 = 600 2 7 y 1 ( T ) = 18 5 2 + 1 21 − 2 15 2 + 3 7 + 84 = 600 7 \left\{\begin{matrix} x_1(T)=180\frac {5\sqrt{2}+1}{21} + 20\frac {15\sqrt{2}+3}{7} = \frac{600\sqrt{2}}{7} \\ y_1(T)=18\frac {5\sqrt{2}+1}{21} - 2\frac {15\sqrt{2}+3}{7}+84 = \frac{600}{7} \end{matrix}\right. {x1(T)=1802152 +1+207152 +3=76002 y1(T)=182152 +127152 +3+84=7600
T T T时刻开始,甲、乙双方都只有一类作战单位相互交战,其作战的Lanchester方程为
{ x ˙ 1 = − y 1 y ˙ 1 = − x 1 \left\{\begin{matrix} \dot x_1 = -y_1 \\ \dot y_1 = -x_1 \end{matrix}\right. {x˙1=y1y˙1=x1
在题目的开始已经给出甲、乙双方的初始实力,甲方将乙方第一类作战单位 Y 1 Y_1 Y1 全部消灭时,甲方剩余实力为
x 1 ( T ) 2 − y 1 ( T ) 2 = 600 7 \sqrt{x_1(T)^2 - y_1(T)^2}=\frac {600}{7} x1(T)2y1(T)2 =7600

至此,给出了情况1中各个方程的解法以及整体的思路。下面简要说明情况2情况3

(2)情况2

在这里插入图片描述
在这里插入图片描述

(3)情况3

在这里插入图片描述
在这里插入图片描述

总结

  • 运用特征向量与作战指数的方法判断作战胜负是有意义的.战斗开始时总作战指数大的一方占有优势,容易获胜。且双方总作战指数初始值相差越大,胜负也越悬殊。
  • 双方火力分配策略对于双方总作战指数的计算以及战斗胜负均有重要影响。在双方“实力”相差不大时,火力分配策略的失误可能丧失本可获得的胜利。
  • 如何制定合理的或最优的火力分配策略是一个至关重要的问题。

本例中, X 1 X_1 X1 Y 2 Y_2 Y2 间交战的激烈程度强于 X 1 X_1 X1 Y 1 Y_1 Y1 间交战的激烈程度,这从毁伤系数矩阵 A A A B B B 中很容易看出。对于甲方来说, X 1 X_1 X1 首先攻击 Y 2 Y_2 Y2 要优于首先攻击 Y 1 Y_1 Y1 ,这提示我们应首先攻击“交战程度”最激烈的单位。

求解思路

  • 确定作战策略,得到 Φ \mathit{\Phi} Φ Ψ \mathit{\Psi} Ψ 阵,再写出 G G G H H H 阵,得到特征值;
  • 求出总作战指数初值 U ( 0 ) U(0) U(0) V ( 0 ) V(0) V(0)
  • 按照初始条件求解总作战指数的Lanchester方程,得到 x 1 ( t ) x_1(t) x1(t) y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t) 的兵力损耗方程;
  • 确定一段时间 T T T 后,哪方兵力全部阵亡,并代入相应的方程,解出 T T T,再求出此回合战胜方的剩余兵力,作为下一轮的初始作战兵力;
  • 进入下一轮攻防计算,把时间 T T T 带入剩余的两方(如果还有的话)兵力损耗方程,得出最终战胜一方的剩余兵力。此处一般按照Lanchester平方律计算剩余兵力。
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Lanchester战争预测模型是一种用于预测古代战争中双方损失的数量的模型。该模型假设双方的装备能力相当,单位时间内的损失与战线的长度成正比,并且双方损失的数量相等。这个模型主要适用于古代战争中以短兵相接的肉搏战为主的情况,其中肉搏战的特点是一对一的战斗。\[2\]根据这个模型,可以通过建立微分方程模型来预测战争中双方的损失情况。这种预测模型是预测学中的一种应用,预测学是一门研究预测理论、方法及应用的新兴科学。预测学的基本理论包括惯性原理、类推原理和相关原理,而预测的核心问题则是预测的技术方法或数学模型。\[1\]\[3\] #### 引用[.reference_title] - *1* *3* [数模算法与应用:预测模型(1)美日硫磺岛战役模型](https://blog.csdn.net/weixin_69250798/article/details/125489309)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数学狂想曲(八)——核弹当量问题, Lanchester战争模型, 随机过程](https://blog.csdn.net/antkillerfarm/article/details/82835647)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值