用matlab的bvpc求解器解决最优控制问题(即两点边值问题)

今天看matlab数学文档的时候,发现可以使用bvp4cbvp5c这两个求解器解决两点边值问题(Boundary Value Problem, BVP),上网搜了一下,发现CSDN上有人用bvp4c解决了一个最优控制问题,下面是对他的博客的个人理解。

【理论】

bvp4c函数用于数值求解两点边值问题,作为Matlab中对ode系列函数的补充。ode系列函数只能数值求解具有初值的常微分方程。

调用格式为

sol = bvp4c(@odefun, @bcfun, solinit, options, p1, p2, ...)

(1)odefun 为微分方程的函数句柄,调用格式为

function dydx = odefun(x, y, p1, p2, ...)

其中,x 为标量,y 是列向量,p1p2 以及剩下的参数是在主函数中和 xy 有关的系数。odefun(x, y)必须返回列向量 dydx ,表示 f ( x , y ) f(x,y) f(x,y)

(2)bcfun 为微分方程的边界条件句柄,调用格式为

function res = bcfun(ya, yb, p1, p2, ...)

其中,ya 为初值,yb 是终值,均为列向量,p1p2 以及剩下的参数是在主函数中和 xy 有关的系数,res 为输出,是列向量。需要注意的是,若在实际问题中, y a ( t 0 ) ya(t_0) ya(t0)的值为 a a a,即 y a ( t 0 ) = a ya(t_0)=a ya(t0)=a,则在函数中应写成ya - ayb也是一样。

(3)solinit 为初始估计解的结构体。使用bvpinit函数创建,调用格式为

solinit = bvpinit(x, y)

其中,x 向量为初始网格的排序节点,应满足边界条件a=solinit.x(1)b=solinit.x(end)y 是为初始估计解,使得solinit.y(:,i)为在solinit.x(i)节点处的初始估计解。以常值作为初始猜测值,此处初值可以任意设置,若任意设置的初值无法解算出合理结果,则可考虑使用continuation方法设置初值,可参考这篇文章

(4)options 为可选积分参数。使用bvpset函数创建,调用格式为

options = bvpset('name1','para1','name2','para2',...)

一般情况可用[]代替。

(5)输出sol为结构体,为特定数量点对应的解,其所包含的字段如下表所示。为使曲线变得更光滑,需要在中间插入一些点,使用deval函数,sxint=deval(sol,xint), 其中,xint为点向量,函数deval根据这些点向量求解。sol为函数bvp4c的输出。

参数功能
sol.xBvp4c 选择的网格
sol.ysol.x 网格点处y(x)的近似值
sol.ypsol.x 网格点处y’(x)的近似值
sol.parametersbvp4c 针对未知参数返回的值(如果有)
sol.solver‘bvp4c’
sol.stats计算成本统计信息(当设置stats选项和bvpset时,会显示此信息)

【例题】求解最优控制问题-有约束的停车能耗最优控制

初始时刻车辆位置为 x 1 ( 0 ) = − 2 x_1(0)=-2 x1(0)=2,速度为 x 2 ( 0 ) = 1 x_2(0)=1 x2(0)=1,状态方程为
{ x ˙ 1 ( t ) = x 2 ( t ) x ˙ 2 ( t ) = u ( t ) \left\{\begin{matrix} \begin{aligned} \dot x_1(t) &= x_2(t) \\ \dot x_2(t) &= u(t) \end{aligned} \end{matrix}\right. {x˙1(t)x˙2(t)=x2(t)=u(t)
容许控制为
∣ u ∣ ≤ M 1 = 1.5 \left | u \right | \le M_1 =1.5 uM1=1.5
终止条件为
x 1 ( t f ) = 0 ,   x 2 ( t f ) = 0 ,   t f = 2 x_1(t_f)=0,\ x_2(t_f)=0,\ t_f=2 x1(tf)=0, x2(tf)=0, tf=2
要最小化的性能指标为总能耗,其表达式为
J ( u ) = ∫ t 0 t f 1 2 u 2 ( t ) d t J(u)=\int_{t_0}^{t_f}\frac{1}{2}u^2(t)\mathrm dt J(u)=t0tf21u2(t)dt

【解】

1
2
3
4

【代码】

%% 主函数
function main_Optimalcpntrol
clc;close all;
T = 2; N = 1000; dt = T/N; M = 1.5;
solinit = bvpinit(linspace(0, T, N), [0 0 0.5 0.5]);
options = bvpset('Stats','on','RelTol',1e-1);
sol = bvp4c(@BVP_ode,@BVP_bc,solinit,options);
t = sol.x;
y = sol.y;

%% 最小化性能指标
X(1,:)=[-2;1];
J=0;
% 此处计算性能指标,将其离散化再计算,值得学习
for k=1:N-1
    % 此处的 if 程序即《最优控制:数学理论与智能方法(上册)》 pp 209(4.2.29)
    if y(4,k)>M       % y(4,:)是协态变量p2(t),那么y(3,:)是协态变量p1(t)
        U = -M;
    elseif y(4,k)<-M
        U = M;
    else
        U = -y(4,k);
    end
    X(k+1,2) = X(k,2) + dt*U;
    u(1,k)   = (X(k+1,2)-X(k,2)) / dt;
    X(k+1,1) = X(k,1) + dt*X(k,2);
    r        = dt * 0.5 * U^2;
    J        = J+r;
end

%% 画图
figure('Color',[1,1,1]);
plot(linspace(0,T,N), X(:,1), '-','LineWidth',1.5);hold on;
plot(linspace(0,T,N), X(:,2), '-.','LineWidth',1.5);
plot(linspace(0,T,999),u,'--','LineWidth',1.5);
axis([0 2 -2.5 2]);
xlabel('Time',...
       'FontWeight','bold');
ylabel('States',...
       'FontWeight','bold');
legend('Pos','Vel','Acc',...
       'LineWidth',1,...
       'EdgeColor',[1,1,1],...
       'Orientation','horizontal',...
       'Position',[0.5,0.93,0.40,0.055]);
set(gca,'FontName','Times New Roman',...
        'FontSize',15,...
        'LineWidth',1.2);
%     'YTick',[-2.5:1:2.1]);
saveas(gcf,'fg1.png');
end

%% 微分方程组
function dydt = BVP_ode(t,y)
M = 1.5;
% 用这行代码更好理解
% 此处的 if 程序即《最优控制:数学理论与智能方法(上册)》 pp 209(4.2.29)
if y(4)>M       % y(4,:)是协态变量p2(t),那么y(3,:)是协态变量p1(t)
    u = -M;
elseif y(4)<-M
    u = M;
else
    u = -y(4);
end
% u = -y(4);
% u = max(-M,u);
% u = min(M,u);
dydt = [y(2)
        u
        0
        -y(3)];
end

%% 边界条件函数
function res = BVP_bc(ya,yb)
res = [ya(1) + 2
       ya(2) - 1
       yb(1)
       yb(2)];
end

仿真结果如下

在这里插入图片描述

【参考文献】

[1] Jie Zhang, Fei-Yue Wang. 最优控制:数学理论与智能方法(上册)[M]. 2017. pp 206-213.

[2] lynn156. 两点边值问题求解—bvp4c函数[OL]. https://blog.csdn.net/lynn15600693998/article/details/86603731 2019-01-23.

[3] 瞿立建. 用Matlab bvp4c 解带未知参数的常微分方程边值问题,怎么给出合适的初值?[OL]. http://www.joyfulphysics.net/index.php/archives/189/ 2018-05-23

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值