自适应动态规划(Adaptive Dynamic Programming,ADP)解决动态系统中的最优控制问题--基础入门(附带matlab代码帮助理解)

自适应动态规划(Adaptive Dynamic Programming,ADP)是一种优化控制方法,用于解决动态系统中的最优控制问题。它通过近似动态规划(Approximate Dynamic Programming)的方式来逼近系统的最优控制策略。

一、原理推导---废话少说

逐步推导自适应动态规划(ADP)算法在离散时间线性二次型调节器(LQR)问题中的应用。

1. 问题定义

考虑一个离散时间线性系统:

x_{k+1} = Ax_{k}+Bu_{k}

其中,

  • x_{k}\in \mathbb{R}^{n}是系统状态向量,
  • u_{k}\in \mathbb{R}^{m}是控制输入向量,
  • A\in \mathbb{R}^{n\times n}B\in \mathbb{R}^{n\times m} 分别是系统的状态矩阵和控制矩阵。

2. 成本函数

目标是最小化以下无穷时间范围内的二次型成本函数:

J=\sum_{k=0}^{\infty }\gamma ^{k}(x_{k}^{T}Qx_{k}+u_{k}^{T}Ru_{k})

其中,

  • Q\in \mathbb{R}^{n\times n}是正定的状态权重矩阵,
  • R\in \mathbb{R}^{m\times m} 是正定的控制权重矩阵,
  • \gamma \in (0,1)是折扣因子。

3. 动态规划原理

动态规划(DP)方法通过求解贝尔曼方程来找到最优策略。贝尔曼方程为:

V(x_{k})=min_{u_{k}}[x_{k}^{T}Qx_{k}+u_{k}^{T}Ru_{k}+\gamma V(x_{k+1})]

其中,V(x_{k})是从状态x_{k}开始的最优成本函数。

假设值函数V(x_{k})具有二次型形式:

V(x_{k})=x_{k}^{T}Px_{k}

其中,P 是一个对称正定矩阵。

4. 最优控制策略

在这种假设下,贝尔曼方程变为:

x_{k}^{T}Px_{k}=min_{u_{k}}[x_{k}^{T}Qx_{k}+u_{k}^{T}Ru_{k}+\gamma (Ax_{k}+Bu_{k})^{T}P(Ax_{k}+Bu_{k})]

对控制输入 u_{k}求导并设置导数为零,得到最优控制输入:

u^{_{k}^{*}}=-(R+\gamma B^{T}PB)^{-1}\gamma B^{T}PA x_{k}

5. 值函数迭代

为了迭代更新值函数矩阵 P,可以使用梯度下降方法。具体地,在每次迭代中,根据当前策略计算状态和成本,然后更新 P:

P=P+\alpha [(x_{k}^{T}Qx_{k}+u_{k}^{T}Ru_{k}+\gamma x_{k +1}^{T}Px_{k+1})-x_{k}^{T}Px_{k}]x_{k}x_{k}^{T}

其中,\alpha 是学习率。

6. 数值稳定性和正则化

为了确保矩阵R+\gamma B^{T}PB 在计算控制输入时的可逆性,可以加入正则化项 𝜖:

u^{_{k}^{*}}=-(R+\gamma B^{T}PB+\epsilon I)^{-1}\gamma B^{T}PA x_{k}

并在更新值函数矩阵P后,通过监控其特征值确保P保持正定。如果发现负特征值,将其设置为一个小的正值\epsilon

二、matlab程序仿真

下面是一个简单的自适应动态规划优化控制的 MATLAB 程序示例。这个程序将解决一个简单的二次型调节器(LQR)问题,用于演示 ADP 的基本思想。

1. 定义系统模型

我们以一个离散时间线性系统为例:

 x_{k+1} = Ax_{k}+Bu_{k}

其中,x_{k}是系统状态,u_{k}​ 是控制输入,A 和 B 分别是系统的状态矩阵和控制矩阵。

2. 定义成本函数

我们的目标是最小化以下二次型成本函数:

J=\sum_{k=0}^{\infty }(x_{k}^{T}Qx_{k}+u_{k}^{T}Ru_{k})

其中,Q 和 R 是权重矩阵,确保系统状态和控制输入之间的平衡。

3. ADP 优化控制程序

以下是完整的 MATLAB 程序

% ADP Optimal Control
clear;
clc;

% Define system parameters
A = [1 1; 0 1];
B = [0.5; 1];
Q = eye(2);
R = 1;

% ADP parameters
num_iterations = 100;
gamma = 0.95; % Discount factor
learning_rate = 0.01;

% Initialize value function weights (assuming quadratic form)
P = eye(2);

% Simulation parameters
x0 = [10; 0]; % Initial state
num_steps = 100;
trajectory = zeros(2, num_steps);

% ADP algorithm
for iter = 1:num_iterations
    % Initialize state
    x = x0;
    for k = 1:num_steps
        % Compute control input using current policy
        u = -inv(R + B' * P * B) * B' * P * A * x;
        
        % Store state
        trajectory(:, k) = x;
        
        % Compute next state
        x_next = A * x + B * u;
        
        % Compute cost-to-go
        cost_to_go = x' * Q * x + u' * R * u + gamma * x_next' * P * x_next;
        
        % Update value function weights
        P = P + learning_rate * (cost_to_go - x' * P * x) * (x * x');
        
        % Update state
        x = x_next;
    end
end

% Plot results
figure;
plot(trajectory(1, :), 'r', 'LineWidth', 2);
hold on;
plot(trajectory(2, :), 'b', 'LineWidth', 2);
xlabel('Time step');
ylabel('State');
legend('x1', 'x2');
title('State Trajectory using ADP Optimal Control');
grid on;

致读者:本人小白,也是在学习的过程中,会陆续更新关于强化学习优化控制相关内容,总结后分享给大家,和大家一起讨论学习!如果出现错误,请大家指出,我会更正!!!感谢!!!!

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 自适应动态规划Adaptive Dynamic ProgrammingADP)是一种新的自适应优化方法,常用于不确定性和复杂度高的系统ADP通过学习系统动力学模型和价值函数来实现基于模型的控制。与传统动态规划相比,ADP能够直接利用连续状态和行动空间,具有更广泛的应用领域和更高的计算效率。 在Matlab实现ADP需要进行如下步骤: 1. 定义系统状态和行动空间。 2. 构建系统动力学模型,即状态转移函数和奖励函数。通常情况下,这些函数由实验数据或经验规则指定,也可以通过系统辨识得到。 3. 计算动态规划的值函数。ADP使用近似动态规划方法来计算值函数,通常采用神经网络等方法进行逼近。 4. 选择最优决策。根据计算得到的值函数,选择最优行动策略,即选择使得值函数最大的行动。 5. 用实际行动反馈更新价值函数。根据实际行动反馈,不断更新价值函数。通常采用在线学习的方式。 6. 重复步骤3到5,直到得到收敛的价值函数和最优策略。 以上就是在Matlab实现自适应动态规划的基本步骤。需要注意的是,在实际应用ADP算法的具体实现方式和参数设置应根据具体的问题进行调整和优化。 ### 回答2: 自适应动态规划Adaptive Dynamic Programming,简称ADP)是一种基于控制论和动态规划的智能控制方法。其核心思想是利用适应性机制,根据系统当前状态,实时调整控制规则,从而优化系统性能。 在Matlab实现自适应动态规划,需要先定义系统的状态、动作和奖励函数。然后,可以利用ADP算法求解最优控制规则。ADP算法通常包含两个步骤:值函数近似和策略改进。其,值函数近似是利用神经网络等方法,近似得出状态值函数;而策略改进则是根据当前状态值函数,通过动态规划算法,更新最优控制策略。 以下是一个简单的自适应动态规划Matlab代码示例: % 定义状态、动作和奖励函数 s = [1,2,3,4]; % 状态集合 a = [-1,0,1]; % 动作集合 r = zeros(length(s), length(a)); % 奖励函数 r(4,:) = 10; % 最终状态奖励为10 % 值函数近似 net = fitnet(10); % 10个神经元的神经网络 for i = 1:1000 % 迭代1000次 for j = 1:length(s) for k = 1:length(a) s_next = s(j) + a(k); % 计算下一个状态 if s_next < 1 || s_next > 4 % 判断是否越界 v_next = 0; % 越界时,状态值为0 else v_next = net(s_next); % 计算下一个状态值 end Q(j,k) = r(j,k) + v_next; % 计算Q值 end end net = train(net, s', Q'); % 通过误差反向传播算法,训练神经网络 end % 策略改进 policy = zeros(1, length(s)); % 初始化最优策略 for i = 1:length(s) [~, idx] = max(Q(i,:)); % 找到最大Q值对应的动作 policy(i) = a(idx); % 将最优动作作为最优策略 end 通过以上代码,可以实现对简单自适应动态规划的求解与最优控制策略的更新。当然,实际应用还需要考虑更多的因素,如状态空间的维度、控制目标的设定等。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值