Caffe学习2:Blob

caffe源码中会出现不少explicit、inline关键字;
C++中的explicit关键字的作用是禁止单参数构造函数的隐式转换,只能用于修饰只有一个参数的类构造函数, 它的作用是表明该构造函数是显示的, 而非隐式的;还有inline的作用,iniline主要是将代码进行复制,扩充,会使代码总量上升,好处就是可以节省调用的开销,能提高执行效率。

2.Blob

Caffe 使用 blobs 结构来存储、交换和处理网络中正向和反向迭代时的数据和导数信息: blob 是 Caffe 的标准数组结构,它提供了一个统一的内存接口。Blob 详细描述了信息是如何在 layer 和 net 中存储和交换的。同时它还隐含提供了在CPU和GPU之间同步数据的能力,从数学意义上说, blob 是按 C 风格连续存储的 N 维数组。
对于批量图像数据来说, blob 常规的维数为图像数量 N 通道数 K 图像高度 H 图像宽度 W。 Blob 按行为主(row-major) 进行存储,所以一个 4 维 blob 中,坐标为(n, k, h, w)的值的物理位置为((n K + k) * H + h) * W + w,这也使得最后面/最右边的维度更新最快。

Blob是一个模板类,声明在include/caffe/blob.hpp中,封装了SyncedMemory类,作为计算单元服务Layer、Net、Sovler等;

主要成员变量

protected:
  shared_ptr<SyncedMemory> data_;// 存放数据
  shared_ptr<SyncedMemory> diff_;//存放梯度
  vector<int> shape_; //存放形状
  int count_; //数据个数
  int capacity_; //数据容量

BLob只是一个基本的数据结构,因此内部的变量相对较少,首先是data_指针,指针类型是shared_ptr,属于boost库的一个智能指针,这一部分主要用来申请内存存储data,data主要是正向传播的时候用的。同理,diff_主要用来存储偏差,update data,shape_data和shape_都是存储Blob的形状,一个是老版本一个是新版本。count表示Blob中的元素个数,也就是个数通道数高度*宽度,capacity表示当前的元素个数,因为Blob可能会reshape。

主要函数

template <typename Dtype>  
class Blob {  
 public:  

//blob的构造函数,不允许隐式的数据类型转换  
  Blob(): data_(), diff_(), count_(0), capacity_(0) {}  
  explicit Blob(const int num, const int channels, const int height,  
      const int width);  
  explicit Blob(const vector<int>& shape);  

  //几个Reshape函数,对blob的维度进行更改  
  void Reshape(const int num, const int channels, const int height, const int width);       // 用户的reshape接口(常用)  

其中Blob作为一个最基础的类,其中构造函数开辟一个内存空间来存储数据,Reshape函数在Layer中的reshape或者forward操作中来adjust dimension。同时在改变Blob大小时,内存将会被重新分配如果内存大小不够了,并且额外的内存将不会被释放。对input的blob进行reshape,如果立马调用Net::Backward是会出错的,因为reshape之后,要么Net::forward或者Net::Reshape就会被调用来将新的input shape 传播到高层。

Blob类里面还有重载很多个count()函数,主要还是为了统计Blob的容量(volume),或者是某一片(slice),从某个axis到具体某个axis的shape乘积。还有看意思也知道了,CHECK_GE肯定是在做比较Geater or Eqal这样的意思,是用来做比较的。这其实是GLOG,谷歌的一个日志库,Caffe里面用用了大量这样的宏,看起来也比较直观

inline int count(int start_axis, int end_axis) const {      // 返回特定维度区间的元素的个数  
    CHECK_LE(start_axis, end_axis); //保证start_axis <= end_axis 
    CHECK_GE(start_axis, 0);        //保证start_axis >= 0
    CHECK_GE(end_axis, 0);          //保证end_axis >=0
    CHECK_LE(start_axis, num_axes());  //保证start_axis <= 总的维度数目
    CHECK_LE(end_axis, num_axes());  //end_axis  <= 总的维度数目
    int count = 1;  
    for (int i = start_axis; i < end_axis; ++i) {  
      count *= shape(i);  
    }  
    return count;  
  }  

并且Blob的Index是可以从负坐标开始读的,这一点跟Python好像

inline int CanonicalAxisIndex(int axis_index)

对于Blob中的4个基本变量num,channel,height,width可以直接通过shape(0),shape(1),shape(2),shape(3)来访问。

计算offset

inline int offset(const int n, const int c = 0, const int h = 0, const int w = 0)
inline int offset(const vector<int>& indices)

offset计算的方式也支持两种方式,一种直接指定n,c,h,w或者放到一个vector中进行计算,偏差是根据对应的n,c,h,w,返回的offset是((n * channels() + c) * height() + h) * width() + w

void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,bool reshape = false);

从一个blob中copy数据 ,通过开关控制是否copy_diff,如果是False则copy data。reshape控制是否需要reshape。好我们接着往下看

inline Dtype data_at(const int n, const int c, const int h, const int w)
inline Dtype diff_at(const int n, const int c, const int h, const int w)
inline Dtype data_at(const vector<int>& index)
inline Dtype diff_at(const vector<int>& index)
inline const shared_ptr<SyncedMemory>& data()
inline const shared_ptr<SyncedMemory>& diff()

这一部分函数主要通过给定的位置访问数据,根据位置计算与数据起始的偏差offset,在通过cpu_data*指针获得地址。下面几个函数都是获得

  const Dtype* cpu_data() const; //cpu使用的数据
  void set_cpu_data(Dtype* data);//用数据块的值来blob里面的data。
  const Dtype* gpu_data() const;//返回不可更改的指针,下同
  const Dtype* cpu_diff() const;
  const Dtype* gpu_diff() const;
  Dtype* mutable_cpu_data();//返回可更改的指针,下同
  Dtype* mutable_gpu_data();
  Dtype* mutable_cpu_diff();
  Dtype* mutable_gpu_diff();

Blob同时保存了data_和diff_,其类型为SyncedMemory的指针。
对于data_(diff_相同),其实际值要么存储在CPU(cpu_ptr_)要么存储在GPU(gpu_ptr_),有两种方式访问CPU数据(GPU相同),因而有了这两种数据访问方式:静态方式,不改变数值;动态方式,改变数值。带mutable_开头的意味着可以对返回的指针内容进行更改,而不带mutable_开头的返回const 指针,不能对其指针的内容进行修改,
之所以这么设计是因为 blob 使用了一个 SyncedMem 类来同步 CPU 和 GPU 上的数值,以隐藏同步的细节和最小化传送数据。一个经验准则是,如果不想改变数值,就一直使用常量调用,而且绝不要在自定义类中存储指针。 每次操作 blob 时, 调用相应的函数来获取它的指针,因为 SyncedMem 需要用这种方式来确定何时需要复制数据。
实际上,使用 GPU 时, Caffe 中 CPU 代码先从磁盘中加载数据到 blob,同时请求分配一个 GPU 设备核(device kernel) 以使用 GPU 进行计算,再将计算好的 blob 数据送入下一层,这样既实现了高效运算,又忽略了底层细节。 只要所有 layers 均有 GPU 实现,这种情况下所有的中间数据和梯度都会保留在 GPU 上。
这里有一个示例,用以确定 blob 何时会复制数据:

// 假定数据在 CPU 上进行初始化,我们有一个 blob
const Dtype* foo;
Dtype* bar;
foo = blob.gpu_data(); // 数据从 CPU 复制到 GPU
foo = blob.cpu_data(); // 没有数据复制,两者都有最新的内容
bar = blob.mutable_gpu_data(); // 没有数据复制
// ... 一些操作 ...
bar = blob.mutable_gpu_data(); // 仍在 GPU,没有数据复制
foo = blob.cpu_data(); // 由于 GPU 修改了数值,数据从 GPU 复制到 CPU
foo = blob.gpu_data(); //没有数据复制,两者都有最新的内容
bar = blob.mutable_cpu_data(); // 依旧没有数据复制
bar = blob.mutable_gpu_data(); //数据从 CPU 复制到 GPU
bar = blob.mutable_cpu_data(); //数据从 GPU 复制到 CPU

说明:
1、经验上来说,如果不需要改变其值,则使用常量调用的方式,并且,不要在你对象中保存其指针。为何要这样设计呢,因为这样涉及能够隐藏CPU到GPU的同步细节,以及减少数据传递从而提高效率,当你调用它们的时候,SyncedMem会决定何时去复制数据,通常情况是仅当gnu或cpu修改后有复制操作,引用上述官方文档实例说明何时进行复制操作。
2、调用mutable_cpu_data()可以让head转移到cpu上
3、第一次调用mutable_cpu_data(),将为cpu_ptr_分配host内存
4、若head从gpu转移到cpu,将把数据从gpu复制到cpu中

void Update();

update里面面调用了

caffe_axpy<float>(const int N, const float alpha, const float* X,float* Y)
{ cblas_saxpy(N, alpha, X, 1, Y, 1); }

这个函数在caffe的util下面的match-functions.cpp里面,主要是负责了线性代数库的调用,实现的功能是
这里写图片描述也就是blob里面的data部分减去diff部分
可以参考http://blog.csdn.net/seven_first/article/details/47378697

大部分代码都有注释就不一一列举了

include/caffe/blob.hpp

*************************************************************************  
#ifndef CAFFE_BLOB_HPP_  
#define CAFFE_BLOB_HPP_  
#include <algorithm>  
#include <string>  
#include <vector>  
#include "caffe/common.hpp"  
#include "caffe/proto/caffe.pb.h" //里面声明了Blobproto、Blobshape等遵循caffe.proto协议的数据结构  
#include "caffe/syncedmem.hpp"    //CPU/GPU共享内存类,用于数据同步,很多实际的动作都在这里面执行  
*************************************************************************  
const int kMaxBlobAxes = 32;     //blob的最大维数目  
namespace caffe {  
template <typename Dtype>  
class Blob {  
 public:  

//blob的构造函数,不允许隐式的数据类型转换  
  Blob(): data_(), diff_(), count_(0), capacity_(0) {}  
  explicit Blob(const int num, const int channels, const int height,  
      const int width);  
  explicit Blob(const vector<int>& shape);  

  //几个Reshape函数,对blob的维度进行更改  
  void Reshape(const int num, const int channels, const int height, const int width);       // 用户的reshape接口(常用)  
  void Reshape(const vector<int>& shape);       // 通过重载调用真正的reshape函数  
  void Reshape(const BlobShape& shape);         // 用户的reshape接口  
  void ReshapeLike(const Blob& other);          // 用户的reshape接口  
  //获取Blob的形状字符串,用于打印log,比如: 10 3 256 512 (3932160),总元素个数    
  inline string shape_string() const {  
    ostringstream stream;  
    for (int i = 0; i < shape_.size(); ++i) {  
      stream << shape_[i] << " ";           //打印每一个维度信息  
    }  
    stream << "(" << count_ << ")";         //打印总的元素的个数  
    return stream.str();  
  }  
  inline const vector<int>& shape() const { return shape_; }  // 成员函数,返回blob的形状信息(常用)  


  inline int shape(int index) const {                         // 返回blob特定维度的大小(常用)  
    return shape_[CanonicalAxisIndex(index)];   
  }  
  inline int num_axes() const { return shape_.size(); }       // 返回blob维度  
  inline int count() const { return count_; }                 // 返回元素的个数  


  inline int count(int start_axis, int end_axis) const {      // 返回特定维度区间的元素的个数  
    CHECK_LE(start_axis, end_axis);  
    CHECK_GE(start_axis, 0);  
    CHECK_GE(end_axis, 0);  
    CHECK_LE(start_axis, num_axes());  
    CHECK_LE(end_axis, num_axes());  
    int count = 1;  
    for (int i = start_axis; i < end_axis; ++i) {  
      count *= shape(i);  
    }  
    return count;  
  }  

  inline int CanonicalAxisIndex(int axis_index) const {       // 检查输入的维度的合法性  
    CHECK_GE(axis_index, -num_axes())  
        << "axis " << axis_index << " out of range for " << num_axes()  
        << "-D Blob with shape " << shape_string();  
    CHECK_LT(axis_index, num_axes())  
        << "axis " << axis_index << " out of range for " << num_axes()  
        << "-D Blob with shape " << shape_string();  
    if (axis_index < 0) {  
      return axis_index + num_axes();  
    }  
    return axis_index;  
  }  


  inline int num() const { return LegacyShape(0); }           // 返回样本的个数(常用)  
  inline int channels() const { return LegacyShape(1); }      // 返回通道的个数(常用)  
  inline int height() const { return LegacyShape(2); }        // 返回样本维度一,对于图像而言是高度(常用)  
  inline int width() const { return LegacyShape(3); }         // 返回样本维度二,对于图像而言是宽度(常用)  

  //返回特定维度的大小,包含对输入维度的合法性检查,被上面函数调用  
  inline int LegacyShape(int index) const {       
    CHECK_LE(num_axes(), 4)  
        << "Cannot use legacy accessors on Blobs with > 4 axes.";  
    CHECK_LT(index, 4);  
    CHECK_GE(index, -4);  
    if (index >= num_axes() || index < -num_axes()) {  
      // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse  
      // indexing) -- this special case simulates the one-padding used to fill  
      // extraneous axes of legacy blobs.  
      return 1;  
    }  
    return shape(index);  
  }  
  // 计算当前的样本的偏移量,供后面序列化寻址使用  
  inline int offset(const int n, const int c = 0, const int h = 0,const int w = 0) const {  
    CHECK_GE(n, 0);  
    CHECK_LE(n, num());  
    CHECK_GE(channels(), 0);  
    CHECK_LE(c, channels());  
    CHECK_GE(height(), 0);  
    CHECK_LE(h, height());  
    CHECK_GE(width(), 0);  
    CHECK_LE(w, width());  
    return ((n * channels() + c) * height() + h) * width() + w;  
  }  


  inline int offset(const vector<int>& indices) const {  
    CHECK_LE(indices.size(), num_axes());  
    int offset = 0;  
    for (int i = 0; i < num_axes(); ++i) {  
      offset *= shape(i);  
      if (indices.size() > i) {  
        CHECK_GE(indices[i], 0);  
        CHECK_LT(indices[i], shape(i));  
        offset += indices[i];  
      }  
    }  
    return offset;  
  }  

  // 从其他的blob来拷贝到当前的blob中,默认是不拷贝梯度的,如果形状不一致需要使能reshape,不然无法拷贝  
  void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,  
      bool reshape = false);  

  // 返回特定位置的元素值  
  inline Dtype data_at(const int n, const int c, const int h,  
      const int w) const {  
    return cpu_data()[offset(n, c, h, w)];  
  }  
  // 返回特定位置的梯度值  
  inline Dtype diff_at(const int n, const int c, const int h,  
      const int w) const {  
    return cpu_diff()[offset(n, c, h, w)];     //这个是序列话的值  
  }  
  // 重载返回特定元素的值,作用与上面函数相同  
  inline Dtype data_at(const vector<int>& index) const {  
    return cpu_data()[offset(index)];  
  }  
  // 重载返回特定梯度的值,作用与上面函数相同  
  inline Dtype diff_at(const vector<int>& index) const {  
    return cpu_diff()[offset(index)];  
  }  

  // 返回当前的训练样本的数据(指针)(常用)  
  inline const shared_ptr<SyncedMemory>& data() const {  
    CHECK(data_);  
    return data_;  
  }  
  // 返回当前训练样本的梯度(指针)(常用)  
  inline const shared_ptr<SyncedMemory>& diff() const {  
    CHECK(diff_);  
    return diff_;  
  }  


  const Dtype* cpu_data() const;   // 只读获取cpu的data_的指针  
  void set_cpu_data(Dtype* data);  // 设置cpu的data_指针,修改指针仅  
  const int* gpu_shape() const;    // 只读获取gpu上数据的形状信息  
  const Dtype* gpu_data() const;   // 只读获取gpu上的data_的指针  
  const Dtype* cpu_diff() const;   // 只读获取cpu的diff_的指针  
  const Dtype* gpu_diff() const;   // 只读获取gpu的diff_的指针  
  Dtype* mutable_cpu_data();       // 读写访问cpu data  
  Dtype* mutable_gpu_data();       // 读写访问gpu data  
  Dtype* mutable_cpu_diff();       // 读写访问cpu diff  
  Dtype* mutable_gpu_diff();       // 读写访问cpu diff  
  void Update();                   // 数据更新,即减去当前计算出来的梯度  
  void FromProto(const BlobProto& proto, bool reshape = true);   // 将数据进行反序列化,从磁盘导入之前存储的blob  
  void ToProto(BlobProto* proto, bool write_diff = false) const; // 将数据进行序列化,便于存储  


  Dtype asum_data() const;         // 计算data的L1范数  
  Dtype asum_diff() const;         // 计算diff的L1范数  
  Dtype sumsq_data() const;        // 计算data的L2范数  
  Dtype sumsq_diff() const;        // 计算diff的L2范数  


  void scale_data(Dtype scale_factor);   // 按照一个标量进行伸缩data_  
  void scale_diff(Dtype scale_factor);   // 按照一个标量进行伸缩diff_  


  void ShareData(const Blob& other);     // 只是拷贝过来other的data  
  void ShareDiff(const Blob& other);     // 只是拷贝过来other的diff  
//看名字就知道了一个是共享data,一个是共享diff,具体就是将别的blob的data和响应的diff指针给这个Blob,实现数据的共享。这个操作会引起这个Blob里面的SyncedMemory被释放,因为shared_ptr指针被用=重置的时候回调用响应的析构器

  bool ShapeEquals(const BlobProto& other);  // 判断两个blob的形状是否一致  


 protected:  
  shared_ptr<SyncedMemory> data_;            // 类的属性---数据  
  shared_ptr<SyncedMemory> diff_;            // 类的属性---梯度  
  shared_ptr<SyncedMemory> shape_data_;         
  vector<int> shape_;                        // 类的属性---形状信息  
  int count_;                                // 有效元素总的个数  
  int capacity_;                             // 存放bolb容器的容量信息,大于等于count_  


  DISABLE_COPY_AND_ASSIGN(Blob);  
};  // class Blob  


}  // namespace caffe  


#endif  // CAFFE_BLOB_HPP_  

参考
http://blog.csdn.net/leibaojiangjun1/article/details/53586700
http://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html
http://www.jianshu.com/p/0ac09c3ffec0
Caffe官方教程中译本_CaffeCN社区翻译(caffecn.cn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值