-
什么是随机森林
-
自助法(Bootstrap Method,Bootstrapping,或自助抽样法、拔靴法)是一种从给定训练集中有放回的均匀抽样,也就是说,每当选中一个样本,它等可能地被再次选中并被再次添加到训练集中。
-
Bagging思想
Bagging(bootstrap aggregating),就是从总体样本当中随机取一部分样本、随机取一部分属性进行训练,通过多次这样的操作获得多个模型。通常对分类任务使用简单投票法,对回归任务使用简单平均法。这样极大可能的避免了不好的样本数据、不好的属性,从而提高准确度。因为不好的样本、不好的属性相当于噪声,模型学入噪声后会使准确度不高。
-
随机森林
随机森林(Random Forest)是一种以决策树为基础模型的Bagging模型。
每棵树的按照如下规则生成:
- 如果训练集大小为N,对于每棵树而言,随机且有放回地从训练集中的抽取N个训练样本,作为该树的训练集;
- 如果每个样本的特征维度为M,指定一个常数m<<M,随机地从M个特征中选取m个特征子集&
-
工智能基础知识总结--随机森林
最新推荐文章于 2024-11-07 23:24:07 发布
随机森林是一种基于决策树的Bagging模型,通过从原始样本和特征中随机抽取构建多个弱分类器,再通过投票或平均策略得出最终结果。文章介绍了随机森林的生成规则、OOB(Out of Bag)数据的概念及其优点,如降低过拟合风险、处理高维数据、并行训练和无偏误差估计。此外,还讨论了特征选择对模型性能的影响以及如何评估特征的重要性。
摘要由CSDN通过智能技术生成