二维小波变换,用pywt.dwt2变换、但是逆变换变不回去了

可能是以下几个原因:

  1. 小波基的选择:确保在分解和重构时使用的小波基是相同的。例如,如果你在分解时使用了'haar'小波基,那么在重构时也应该使用'haar'。
  2. 系数的处理:在分解后,你可能对某些系数进行了修改或阈值处理。确保这些修改是正确和可逆的。
  3. 正确的逆变换:确保你正确地使用了逆变换函数。对于二维图像,你应该使用pywt.idwt2
  4. 数据类型和范围:在处理图像时,要注意数据类型和范围。例如,如果原始图像是uint8类型的,那么在重构后,你可能需要将其转换回uint8类型,并进行适当的缩放或截断,以确保像素值在[0, 255]范围内。
  5. 边界效应:小波变换在边界处可能会引入一些效应。这可能会影响重构图像的质量。你可以尝试使用不同的边界处理模式来看看是否有改善。
  6. 检查代码:最后,确保你的代码中没有逻辑或语法错误。

 

import cv2  
import numpy as np  
import pywt  
  
# 读取图像  
img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)  
  
# 对图像进行二维小波分解  
coeffs = pywt.dwt2(img, 'haar')  
cA, (cH, cV, cD) = coeffs  
  
# 对小波系数进行逆变换  
reconstructed = pywt.idwt2((cA, (cH, cV, cD)), 'haar')  
  
# 确保重构的图像在[0, 255]范围内,并转换为uint8类型  
reconstructed = np.clip(reconstructed, 0, 255).astype(np.uint8)  
  
# 显示原始图像和重构后的图像  
cv2.imshow('Original Image', img)  
cv2.imshow('Reconstructed Image', reconstructed)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

上述代码这句话是关键

# 确保重构的图像在[0, 255]范围内,并转换为uint8类型  
reconstructed = np.clip(reconstructed, 0, 255).astype(np.uint8)  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值