随机过程 更新过程(上)

随机过程 更新过程

更新过程的定义及若干分布

更新过程:Poisson 过程的 X i X_i Xi 服从参数为 λ \lambda λ 的指数分布。这里我们进行推广,保留 X i X_i Xi 的独立性同分布性,而允许任意分布,这样的过程称为更新过程。数学定义为:设 { X n ,   n = 1 ,   2 ,   ⋯   } \{X_n,\,n=1,\,2,\,\cdots\} {Xn,n=1,2,} 是一列独立同分布的非负随机变量,分布函数为 F ( x ) F(x) F(x) (为了避免平凡的情况,设 F ( 0 ) = P ( X n = n ) ≠ 1 F(0)=P(X_n=n)\not=1 F(0)=P(Xn=n)=1),记 μ = E ( X n ) = ∫ 0 ∞ x F ( x )   d x \mu=E(X_n)=\int_0^{\infty}xF(x)\,dx μ=E(Xn)=0xF(x)dx ,则 0 < μ ≤ ∞ 0<\mu\leq \infty 0<μ ;令 T n = ∑ i = 1 n X i ,   n ≥ 1 ,   T 0 = 0 T_n=\sum\limits_{i=1}^nX_i,\,n\geq 1,\,T_0=0 Tn=i=1nXi,n1,T0=0 ,我们把由
N ( t ) = sup ⁡ { n :   T n ≤ t } N(t)=\sup\{n:\,T_n\leq t\} N(t)=sup{n:Tnt}
定义的计数过程称为更新过程。

:机器零件的更换,每个零件的寿命为 X i X_i Xi ,一个坏了就换另一个,那么到 t t t 时刻为止所更换的零件数目就构成一个更新过程。

N ( t ) N(t) N(t) 的分布及 E [ N ( t ) ] E[N(t)] E[N(t)] 的性质

问题:在有限时间 [ 0 ,   t ] [0,\,t] [0,t] 内是否会发生无穷多次更新,即 N ( t ) = ∞ N(t)=\infty N(t)= ;答案是不会发生这种情况的概率为 1 1 1 。由强大数定律可知:
∑ i = 1 n X i n = T n n → μ \frac{\sum\limits_{i=1}^nX_i}{n}=\frac{T_n}{n}\to \mu ni=1nXi=nTnμ
0 < μ ≤ ∞ 0<\mu\leq \infty 0<μ ,所以当 n → ∞ n\to\infty n 时, T n → ∞ T_n\to\infty Tn ,也就是说无穷多次更新只可能在无限长的时间内发生,也就是以概率为 1 1 1 N ( t ) < ∞ N(t)\lt \infty N(t)< .

N(t)的分布 :注意到 N ( t ) ≥ n = T n ≤ t N(t)\geq n=T_n\leq t N(t)n=Tnt ,因此有:
P ( N ( t ) = n ) =   P ( N ( t ) ≥ n ) − P ( N ( t ) ≥ n + 1 ) =   P ( T n ≤ t ) − P ( T n + 1 ≤ t ) =   P ( ∑ i = 1 n X i ≤ t ) − P ( ∑ i = 1 n + 1 X i ≤ t ) \begin{align} P(N(t)=n)=&\,P(N(t)\geq n)-P(N(t)\geq n+1) \\ =&\,P(T_n\leq t)-P(T_{n+1}\leq t) \\ =&\,P( \sum\limits_{i=1}^nX_i\leq t)-P( \sum\limits_{i=1}^{n+1}X_i\leq t) \end{align} P(N(t)=n)===P(N(t)n)P(N(t)n+1)P(Tnt)P(Tn+1t)P(i=1nXit)P(i=1n+1Xit)
F n F_n Fn T n T_n Tn 的分布,则 F n F_n Fn F F F n n n 重卷积,所以:
P ( N ( t ) = n ) = F n ( t ) − F n + 1 ( t ) P(N(t)=n)=F_n(t)-F_{n+1}(t) P(N(t)=n)=Fn(t)Fn+1(t)
E[N(t)]的分布 :记 M ( t ) = E [ N ( t ) ] M(t)=E[N(t)] M(t)=E[N(t)] ,称为更新函数。注意 M ( t ) M(t) M(t)是关于 t t t 的函数 ,而不是随机变量。由定义可知:
M ( t ) =   ∑ i = 1 n n P ( N ( t ) = n ) =   ∑ i = 1 n n ( F n ( t ) − F n + 1 ( t ) ) =   ∑ i = 1 n F n ( t ) \begin{align} M(t)=&\,\sum\limits_{i=1}^n nP(N(t)=n) \\ =&\,\sum\limits_{i=1}^nn(F_n(t)-F_{n+1}(t)) \\ =&\,\sum\limits_{i=1}^n F_n(t) \end{align} M(t)===i=1nnP(N(t)=n)i=1nn(Fn(t)Fn+1(t))i=1nFn(t)
Th M ( t ) M(t) M(t) 的是 t t t 的不减函数,且对 0 ≤ t < + ∞ 0\leq t\lt+\infty 0t<+ M ( t ) < + ∞ M(t)\lt +\infty M(t)<+

证明 :因为 N ( t ) N(t) N(t) 是关于 t t t 不减的,因此 M ( t ) M(t) M(t) 关于 t t t 也一定是不减的。
假设 F ( 0 ) < 1 F(0)<1 F(0)<1 ,即 P ( X n = 0 ) < 1 P(X_n=0)<1 P(Xn=0)<1 (或 P ( X n > 0 ) > 0 P(X_n\gt 0)\gt0 P(Xn>0)>0),则存在 a a a ,使得 P ( X n ≥ a ) > 0 P(X_n\ge a)>0 P(Xna)>0 P ( X n < a ) < 1 P(X_n<a)<1 P(Xn<a)<1 。而
F ( a ) = P ( X n ≤ a ) = P ( X n = a ) + P ( X n < a ) F(a)=P(X_n\leq a)=P(X_n=a)+P(X_n<a) F(a)=P(Xna)=P(Xn=a)+P(Xn<a)
为了避免 P ( X n ≥ a ) = P ( X n = a ) P(X_n\geq a)=P(X_n=a) P(Xna)=P(Xn=a) 的情况,我们取 0 < b < a 0<b<a 0<b<a ,显然:
F ( b ) ≤ P ( X n < a ) < 1 F(b)\leq P(X_n<a)<1 F(b)P(Xn<a)<1
下面通过三个不等式来证明 M(t) 是有限的:

① 对于任意 t t t ,恒能找到正整数 k k k 使得 t ≤ b k t\leq bk tbk ,所以:
{ T k ≤ t } ⊆ { T k ≤ b k } ⊂ { X 1 > b ,   X 2 > b ,   ⋯   ,   X k > b } c \{T_k\leq t\}\subseteq\{T_k\leq bk\}\subset\{ X_1>b,\,X_2>b,\,\cdots,\, X_k>b\}^c {Tkt}{Tkbk}{X1>b,X2>b,,Xk>b}c
β = ( 1 − F ( b ) ) k > 0 \beta=(1-F(b))^k>0 β=(1F(b))k>0 ,有:
P ( T k ≤ t ) < 1 − ( 1 − P ( X i ≤ b ) ) k = 1 − ( 1 − F ( b ) ) k = 1 − β \begin{align} P(T_k\le t)\lt 1-(1-P(X_i\leq b))^k=1-(1-F(b))^k=1-\beta \end{align} P(Tkt)<1(1P(Xib))k=1(1F(b))k=1β
② 对于任意正整数 m m m ,有:(组间放缩)
{ T m k ≤ t } ⊂ { T k − T 0 ≤ t ,   T 2 k − T k ≤ t ,   ⋯   ,   T m k − T ( m − 1 ) k ≤ t } \{T_{mk}\leq t\}\subset \{T_k-T_0\leq t,\,T_{2k}-T_k\leq t,\,\cdots,\,T_{mk}-T_{(m-1)k}\le t \} {Tmkt}{TkT0t,T2kTkt,,TmkT(m1)kt}
由更新区间的独立同分布(其实就是 X i X_i Xi 之间的相互独立同分布),有:
P ( T m k ≤ t ) < ( P ( T k ≤ t ) ) m < ( 1 − β ) m P(T_{mk}\leq t)< (P(T_k\leq t))^m<(1-\beta)^m P(Tmkt)<(P(Tkt))m<(1β)m
③ 对任意正整数 j j j 有:(组内放缩)
{ T m k + j ≤ t } ⊂ { T m k ≤ t } \{ T_{mk+j}\leq t \}\subset \{T_{mk}\leq t\} {Tmk+jt}{Tmkt}

即:
P ( T m k + j ≤ t ) < P ( T m k ≤ t ) P(T_{mk+j}\leq t)< P(T_{mk}\leq t) P(Tmk+jt)<P(Tmkt)
综上,有:(相当于把后边无穷多个元素分成 k k k 个一组,然后用 ② 和 ③ 进行放缩)
M ( t ) =   ∑ n = 1 ∞ F n ( t ) =   ∑ n = 1 ∞ P ( T n ≤ t ) =   ∑ n = 1 k − 1 P ( T n ≤ t ) + ∑ n = k ∞ P ( T n ≤ t ) =   ∑ n = 1 k − 1 P ( T n ≤ t ) + ∑ m = 1 ∞ ∑ j = 0 k − 1 P ( T m k + j ≤ t ) <   ∑ n = 1 k − 1 P ( T n ≤ t ) + ∑ m = 1 ∞ k P ( T m k ≤ t ) <   ∑ n = 1 k − 1 P ( T n ≤ t ) + ∑ m = 1 ∞ k ( 1 − β ) m =   ∑ n = 1 k − 1 P ( T n ≤ t ) + k β < ∞ \begin{align} M(t)=&\,\sum\limits_{n=1}^{\infty}F_n(t) \\ =&\,\sum\limits_{n=1}^{\infty}P(T_n\leq t) \\ =&\,\sum\limits_{n=1}^{k-1}P(T_n\leq t)+\sum\limits_{n=k}^{\infty}P(T_n\leq t) \\ =&\,\sum\limits_{n=1}^{k-1}P(T_n\leq t)+\sum\limits_{m=1}^{\infty}\sum\limits_{j=0}^{k-1}P(T_{mk+j}\leq t) \\ <&\,\sum\limits_{n=1}^{k-1}P(T_n\leq t) + \sum\limits_{m=1}^{\infty}kP(T_{mk}\leq t) \\ <&\,\sum\limits_{n=1}^{k-1}P(T_n\leq t) + \sum\limits_{m=1}^{\infty}k(1-\beta)^{m} \\ =&\,\sum\limits_{n=1}^{k-1}P(T_n\leq t) + \frac{k}{\beta} < \infty \end{align} M(t)====<<=n=1Fn(t)n=1P(Tnt)n=1k1P(Tnt)+n=kP(Tnt)n=1k1P(Tnt)+m=1j=0k1P(Tmk+jt)n=1k1P(Tnt)+m=1kP(Tmkt)n=1k1P(Tnt)+m=1k(1β)mn=1k1P(Tnt)+βk<
因此对于任意有限的 t t t M ( t ) M(t) M(t) 也是有限的。

:考虑一个时间离散的更新过程 { N j ,   j = 1 ,   2 ,   ⋯   ,   } \{N_j,\,j=1,\,2,\,\cdots,\,\} {Nj,j=1,2,,},在每个时刻独立进行 Bernoulli 试验,成功的概率为 p p p ,失败的概率为 q = 1 − p q=1-p q=1p 。以试验成功作为事件(更新),求该更新过程的更新函数。

:更新的时间间隔满足几何分布,即:
P ( X i = n ) = q n − 1 p P(X_i=n)=q^{n-1}p P(Xi=n)=qn1p
则第 r r r 次成功(更新)的时刻 T r T_r Tr 服从 Pascal 分布(负二项分布),有:
P ( T r = n ) = C n − 1 r − 1 q n − r p r   n = r ,   r + 1 ,   ⋯ P(T_r=n)=C_{n-1}^{r-1}q^{n-r}p^r \quad\, n=r,\,r+1,\,\cdots P(Tr=n)=Cn1r1qnrprn=r,r+1,
因此,有:
  P ( N ( m ) = r ) =   P ( T r ≤ m ) − P ( T r + 1 ≤ m ) =   ∑ n = r m C n − 1 r − 1 q n − r p r − ∑ n = r + 1 m C n − 1 r q n − r − 1 p r + 1 \begin{align} &\,P(N(m)=r) \\ =&\,P(T_r\leq m)-P(T_{r+1}\leq m) \\ =&\,\sum\limits_{n=r}^mC_{n-1}^{r-1}q^{n-r}p^r-\sum\limits_{n=r+1}^mC_{n-1}^{r}q^{n-r-1}p^{r+1} \end{align} ==P(N(m)=r)P(Trm)P(Tr+1m)n=rmCn1r1qnrprn=r+1mCn1rqnr1pr+1
所以更新函数为:
M ( t ) = E [ N ( t ) ] = ∑ r = 1 t r P ( N ( t ) = r ) M(t)=E[N(t)]=\sum\limits_{r=1}^{t} rP(N(t)=r) M(t)=E[N(t)]=r=1trP(N(t)=r)
(这里求和 r r r 只需要到 t t t ,因为是离散化的时间, t t t 时间内最多更新 t t t 次)

更新方程及其应用

更新方程

更新密度:更新函数的导出存在时,称其导数为更新密度,记为 m ( t ) m(t) m(t) 。由 M ( k ) = ∑ n = 1 ∞ F n ( t ) M(k)=\sum\limits_{n=1}^{\infty}F_n(t) M(k)=n=1Fn(t) 得:
m ( t ) = ∑ n = 1 ∞ f n ( t ) m(t)=\sum\limits_{n=1}^{\infty}f_n(t) m(t)=n=1fn(t)
Th:更新函数和更新密度分别满足以下积分方程:
M ( t ) = F ( t ) + ∫ 0 t M ( t − s )   d F ( s ) m ( t ) = f ( t ) + ∫ 0 t m ( t − s ) f ( s )   d s \begin{array}{c} M(t)=F(t)+\int_{0}^{t}M(t-s)\,dF(s) \\ m(t)=f(t)+\int_{0}^{t}m(t-s)f(s)\,ds \end{array} M(t)=F(t)+0tM(ts)dF(s)m(t)=f(t)+0tm(ts)f(s)ds
证明 :由定义得,以 ∗ * 代表卷积操作:
M ( t ) =   ∑ n = 1 ∞ F i ( t ) = F ( t ) + ∑ n = 2 ∞ F n ( t ) =   F ( t ) + ∑ n = 2 ∞ F n − 1 ( t ) ∗ F ( t ) =   F ( t ) + ( ∑ n = 1 ∞ F n ( t ) ) ∗ F ( t ) =   F ( t ) + M ∗ F ( t ) \begin{align} M(t)=&\,\sum\limits_{n=1}^{\infty}F_i(t)=F(t)+\sum\limits_{n=2}^{\infty}F_n(t) \\ =&\,F(t)+\sum\limits_{n=2}^{\infty}F_{n-1}(t)*F(t) \\ =&\,F(t)+(\sum\limits_{n=1}^\infty F_n(t))*F(t) \\ =&\,F(t)+M*F(t) \end{align} M(t)====n=1Fi(t)=F(t)+n=2Fn(t)F(t)+n=2Fn1(t)F(t)F(t)+(n=1Fn(t))F(t)F(t)+MF(t)
M ∗ F ( t ) = ∫ 0 t M ( t − s )   d F ( s ) M*F(t)=\int_{0}^{t}M(t-s)\,dF(s) MF(t)=0tM(ts)dF(s) ,因此得到上边的方程。第二个方程由第一个方程求导得到。

更新方程:具有以下形式的积分方程称为更新方程:
K ( t ) = H ( t ) + ∫ 0 t K ( t − s ) d F ( s ) K(t)=H(t)+\int_0^tK(t-s)dF(s) K(t)=H(t)+0tK(ts)dF(s)
式中, H ( t ) H(t) H(t) F ( t ) F(t) F(t) 已知,且当 t < 0 t<0 t<0 时,有 H ( t ) = F ( t ) = 0 H(t)=F(t)=0 H(t)=F(t)=0 。当 H ( t ) H(t) H(t) 在任意区间内均有界时,称为适定更新方程,简称为更新方程。

卷积的性质:设 B ( t ) B(t) B(t) 是单调递增的右连续函数且 B ( 0 ) = 0 B(0)=0 B(0)=0(比如分布函数); C ( t ) C(t) C(t) C 1 ( t ) C_1(t) C1(t) C 2 ( t ) C_2(t) C2(t) 为光滑有界函数(这些条件保证了卷积有定义),则有:

  • max ⁡ 0 ≤ t ≤ T ∣ B ∗ C ( t ) ∣ ≤ B ( t ) ⋅ max ⁡ 0 ≤ t ≤ T ∣ C ( t ) ∣ \max\limits_{0\leq t \leq T}|B*C(t)|\leq B(t)\cdot \max\limits_{0\leq t\leq T}|C(t)| 0tTmaxBC(t)B(t)0tTmaxC(t)
  • B ∗ C 1 ( t ) + B ∗ C 2 ( t ) = B ∗ ( C 1 + C 2 ) ( t ) B*C_1(t)+B*C_2(t)=B*(C_1+C_2)(t) BC1(t)+BC2(t)=B(C1+C2)(t) ;(分配律)
  • B 1 ∗ ( B 2 ∗ C ) ( t ) = ( B 1 ∗ B 2 ) C ( t ) B_1*(B_2*C)(t)=(B_1*B_2)C(t) B1(B2C)(t)=(B1B2)C(t) ;(结合律)

Th:设更新方程中 H ( t ) H(t) H(t) 为有界函数,则方程存在唯一的在有限区间内有界的解:
K ( t ) = H ( t ) + ∫ 0 t H ( t − s ) d M ( s ) K(t)=H(t)+\int_0^tH(t-s)dM(s) K(t)=H(t)+0tH(ts)dM(s)
式中 M ( t ) = ∑ n = 1 ∞ F n ( t ) M(t)=\sum\limits_{n=1}^\infty F_n(t) M(t)=n=1Fn(t) ,为 F ( t ) F(t) F(t) 的更新函数。

证明

① 证明该解是有界的:由前边的定理可知,更新函数 M ( t ) M(t) M(t) 有界不减,所以 ∀ T > 0 \forall T\gt 0 T>0 ,有:(最后一步是因为 M ( t ) M(t) M(t) H ( t ) H(t) H(t) 都是有界的)
sup ⁡ 0 ≤ t ≤ T ∣ K ( t ) ∣ ≤ sup ⁡ 0 ≤ t ≤ T ∣ H ( t ) ∣ + ∫ 0 T sup ⁡ 0 ≤ s ≤ T ∣ H ( T − s ) ∣ d M ( s ) ≤ ( 1 + M ( T ) ) sup ⁡ 0 ≤ t ≤ T ∣ H ( t ) ∣ < ∞ \sup\limits_{0\leq t\leq T}|K(t)|\leq \sup\limits_{0\leq t \leq T}|H(t)|+\int_{0}^T\sup\limits_{0\leq s \leq T}|H(T-s)|dM(s)\leq (1+M(T))\sup\limits_{0\leq t \leq T}|H(t)|\lt\infty 0tTsupK(t)0tTsupH(t)+0T0sTsupH(Ts)dM(s)(1+M(T))0tTsupH(t)<
所以在有界区间上 K ( t ) K(t) K(t) 是有界的。

② 证明该解确实是更新方程的解:该解满足更新方程
K ( t ) =   H ( t ) + M ∗ H ( t ) =   H ( t ) + ( ∑ n = 1 ∞ F n ) ∗ H ( t ) =   H ( t ) + F ∗ H ( t ) + ( ∑ n = 2 ∞ F n ) ∗ H ( t ) =   H ( t ) + F ∗ H ( t ) + ( ∑ n = 2 ∞ ( F n − 1 ∗ F ) ) ∗ H ( t ) =   H ( t ) + F ∗ [ H ( t ) + ( ∑ n − 1 ∞ F n ) ∗ H ( t ) ] =   H ( t ) + F ∗ K ( t ) =   H ( t ) + ∫ 0 t K ( t − s ) d F ( s ) \begin{align} K(t)=&\,H(t)+M*H(t) \\ =&\,H(t)+(\sum\limits_{n=1}^{\infty}F_n)*H(t) \\ =&\,H(t)+F*H(t)+(\sum\limits_{n=2}^{\infty}F_n)*H(t) \\ =&\,H(t)+F*H(t)+\left(\sum\limits_{n=2}^{\infty}(F_{n-1}*F)\right)*H(t) \\ =&\,H(t)+F*[H(t)+(\sum\limits_{n-1}^{\infty}F_n)*H(t)] \\ =&\,H(t)+F*K(t) \\ =&\,H(t)+\int_0^tK(t-s)dF(s) \end{align} K(t)=======H(t)+MH(t)H(t)+(n=1Fn)H(t)H(t)+FH(t)+(n=2Fn)H(t)H(t)+FH(t)+(n=2(Fn1F))H(t)H(t)+F[H(t)+(n1Fn)H(t)]H(t)+FK(t)H(t)+0tK(ts)dF(s)
yes!

③ 证明该解的唯一性:设有另外一解 K ~ \tilde{K} K~ 是更新方程的解,并且满足有界性条件,则其满足:
K ~ ( t ) = H ( t ) + F ∗ K ~ ( t ) \tilde{K}(t)=H(t)+F*\tilde{K}(t) K~(t)=H(t)+FK~(t)
连续代换 K ~ ( t ) \tilde{K}(t) K~(t) ,有:(有点像是递归表达式求解通项时不断展开的意思)
K ~ ( t ) =   H ( t ) + F ∗ ( H + F ∗ K ~ ) ( t ) =   H ( t ) + F ∗ H ( t ) + F 2 ∗ K ~ ( t ) =   H ( t ) + F ∗ H ( t ) + F 2 ∗ ( H + F ∗ K ~ ) =   ⋯ =   H ( t ) + ( ∑ i = 1 n F i ) ∗ H ( t ) + F n ∗ K ~ ( t ) \begin{align} \tilde{K}(t)=&\,H(t)+F*(H+F*\tilde{K})(t) \\ =&\,H(t)+F*H(t)+F_2*\tilde{K}(t) \\ =&\,H(t)+F*H(t)+F_2*(H+F*\tilde{K}) \\ =&\,\cdots \\ =&\,H(t)+(\sum\limits_{i=1}^n F_i)*H(t)+F_n*\tilde{K}(t) \end{align} K~(t)=====H(t)+F(H+FK~)(t)H(t)+FH(t)+F2K~(t)H(t)+FH(t)+F2(H+FK~)H(t)+(i=1nFi)H(t)+FnK~(t)
对任何 t t t ,有:
∣ F n ∗ K ~ ∣ = ∣ ∫ 0 t K ~ ( t − x ) d F n ( x ) ∣ ≤ sup ⁡ 0 ≤ x ≤ t ∣ K ~ ( t − x ) ∣ ⋅ F n ( t ) |F_n*\tilde{K}|=\left|\int_{0}^t\tilde{K}(t-x)dF_n(x)\right|\leq \sup\limits_{0\leq x\leq t}|\tilde{K}(t-x)|\cdot F_n(t) FnK~= 0tK~(tx)dFn(x) 0xtsupK~(tx)Fn(t)
我们本来假定 K ~ ( t ) \tilde{K}(t) K~(t) 是有界的,而且更新函数 M ( t ) = ∑ n = 1 ∞ F n ( t ) M(t)=\sum\limits_{n=1}^{\infty}F_n(t) M(t)=n=1Fn(t) 之前证明过就是有界的,那么有 lim ⁡ n → ∞ F n ( t ) = 0 \lim\limits_{n\to\infty}F_n(t)=0 nlimFn(t)=0 ,因此:
K ~ ( t ) = H ( t ) + lim ⁡ n → ∞ [ ∑ k = 1 n − 1 F k ∗ H ( t ) + F n ∗ K ~ ( t ) ] = H ( t ) + M ∗ H ( t ) \tilde{K}(t)=H(t)+\lim\limits_{n\to\infty}\left[ \sum\limits_{k=1}^{n-1}F_k*H(t)+F_n*\tilde{K}(t) \right]=H(t)+M*H(t) K~(t)=H(t)+nlim[k=1n1FkH(t)+FnK~(t)]=H(t)+MH(t)
K ( t ) K(t) K(t) 是一样的

更新方程的应用

:(Wald 等式)若 X 1 X_1 X1 X 2 X_2 X2 ⋯ \cdots 是独立同分布的随机变量,设 E ( x i ) < ∞ E(x_i)\lt \infty E(xi)< ,证明:
E ( T N ( t ) + 1 ) = E ( X 1 + X 2 + ⋯ + X N ( t ) + 1 ) = E ( X 1 ) E ( N ( t ) + 1 ) E(T_{N(t)+1})=E(X_1+X_2+\cdots+X_{N(t)+1})=E(X_1)E(N(t)+1) E(TN(t)+1)=E(X1+X2++XN(t)+1)=E(X1)E(N(t)+1)
:对于第一次更新的时刻 X 1 X_1 X1 ,取条件:
E [ T N ( t ) + 1 ∣ X 1 = x ] = { x x > t x + E [ T N ( t − x ) + 1 ] x ≤ t E[T_{N(t)+1}|X_1=x]=\left\{ \begin{array}{ll} x & x\gt t \\ x+E[T_{N(t-x)+1}] & x\leq t \end{array} \right. E[TN(t)+1X1=x]={xx+E[TN(tx)+1]x>txt
可以理解为,如果 x > t x>t x>t ,那么说明第一次更新发生在 t t t 时刻之后,因此 t t t 时刻及以前更新次数为 0 0 0 N ( t ) = 0 N(t)=0 N(t)=0 ),所以此时 T N ( t ) + 1 = x T_{N(t)+1}=x TN(t)+1=x ;如果 x ≤ t x\leq t xt ,那么由于独立增量,可以将第一次更新的时间看作开始的时间,之后的时间的期望就是 E [ T N ( t − x ) + 1 ] E[T_{N(t-x)+1}] E[TN(tx)+1]

K ( t ) = E [ T N ( t ) + 1 ] K(t)=E[T_{N(t)+1}] K(t)=E[TN(t)+1] F ( x ) F(x) F(x) x x x 的分布函数,则:
K ( t ) =   E [ T N ( t ) + 1 ] = E [ E ( T N ( t ) + 1 ) ∣ X 1 ] =   ∫ 0 ∞ E [ T N ( t ) + 1 ∣ X 1 = x ]   d F ( x ) =   ∫ t ∞ x   d F ( x ) + ∫ 0 t [ x + E [ T N ( t − x ) + 1 ] ]   d F ( x ) =   ∫ 0 ∞ x   d F ( x ) + ∫ 0 t E [ T N ( t − x ) + 1 ]   d F ( x ) =   E ( X 1 ) + ∫ 0 t K ( t − x )   d F ( x ) \begin{align} K(t)=&\,E[T_{N(t)+1}]=E[E(T_{N(t)+1})|X_1] \\ =&\,\int_{0}^{\infty}E[T_{N(t)+1}|X_1=x]\,dF(x) \\ =&\,\int_{t}^{\infty}x\,dF(x)+\int_{0}^{t}[x+E[T_{N(t-x)+1}]]\,dF(x) \\ =&\,\int_{0}^{\infty}x\,dF(x)+\int_{0}^{t}E[T_{N(t-x)+1}]\,dF(x) \\ =&\,E(X_1)+\int_{0}^{t}K(t-x)\,dF(x) \\ \end{align} K(t)=====E[TN(t)+1]=E[E(TN(t)+1)X1]0E[TN(t)+1X1=x]dF(x)txdF(x)+0t[x+E[TN(tx)+1]]dF(x)0xdF(x)+0tE[TN(tx)+1]dF(x)E(X1)+0tK(tx)dF(x)
根据更新方程及其解的形式可以知道:(注意 E ( X 1 ) E(X_1) E(X1) 是一个值,而不是函数)
K ( t ) =   E ( X 1 ) + ∫ 0 t E ( X 1 ) d M ( x ) = E ( X 1 ) [ 1 + M ( t ) ] = E ( X 1 ) [ E ( N ( t ) ) + 1 ] = E ( X 1 ) E [ N ( t ) + 1 ] \begin{align} K(t)=&\,E(X_1)+\int_{0}^{t}E(X_1)dM(x)=E(X_1)[1+M(t)]=E(X_1)[E(N(t))+1]=E(X_1)E[N(t)+1] \end{align} K(t)=E(X1)+0tE(X1)dM(x)=E(X1)[1+M(t)]=E(X1)[E(N(t))+1]=E(X1)E[N(t)+1]
事实上我们不用更新方程也可以直接证明:
E [ T N ( t ) + 1 ] =   ∑ k = 0 ∞ P ( N ( t ) = k ) [ ∑ i = 1 k + 1 ∫ 0 ∞ x i d F ( x i ) ] =   ∑ k = 0 ∞ P ( N ( t ) = k ) ( k + 1 ) E ( X 1 ) =   E ( X 1 ) [ ∑ k = 0 ∞ k ⋅ P ( N ( t ) = k ) + ∑ k = 0 ∞ P ( N ( t ) = k ) ] =   E ( X 1 ) [ E ( N ( t ) ) + 1 ] = E ( X 1 ) E [ N ( t ) + 1 ] \begin{align} E[T_{N(t)+1}]=&\,\sum\limits_{k=0}^{\infty}P(N(t)=k)\left[ \sum\limits_{i=1}^{k+1}\int_{0}^{\infty}x_idF(x_i) \right] \\ =&\,\sum\limits_{k=0}^{\infty}P(N(t)=k)(k+1)E(X_1) \\ =&\,E(X_1)[\sum\limits_{k=0}^{\infty}k\cdot P(N(t)=k)+\sum\limits_{k=0}^{\infty}P(N(t)=k)] \\ =&\,E(X_1)[E(N(t))+1]=E(X_1)E[N(t)+1] \end{align} E[TN(t)+1]====k=0P(N(t)=k)[i=1k+10xidF(xi)]k=0P(N(t)=k)(k+1)E(X1)E(X1)[k=0kP(N(t)=k)+k=0P(N(t)=k)]E(X1)[E(N(t))+1]=E(X1)E[N(t)+1]
:(人口学中的应用)考虑一个确定性的人口模型:

  • B ( t ) B(t) B(t) 表示在时刻 t t t 女婴的出生率,即在时间 [ t ,   t + d t ] [t,\,t+dt] [t,t+dt] 内有 B ( t ) d t B(t)dt B(t)dt 个女婴出生;
  • S ( x ) S(x) S(x) 为生存函数,代表一个新生女婴能够活到年龄 x x x 的概率;
  • β ( x ) \beta(x) β(x) 为生育的年龄强度,即在年龄 [ x ,   x + d x ] [x,\,x+dx] [x,x+dx] 时生下 β ( x ) d x \beta(x)dx β(x)dx 个女婴

我们已知过去的 B ( t ) B(t) B(t) ( t ≤ 0 ) (t\le 0) (t0) ,要预测未来的 B ( t ) B(t) B(t) t > 0 t\gt 0 t>0)。在时刻 t t t ,有 B ( t − x ) S ( x ) d x B(t-x)S(x)dx B(tx)S(x)dx 个女性居民的年龄在 x x x x + d x x+dx x+dx 之间;在此时刻,单位时间内该群体将生育 B ( t − x ) S ( x ) β ( x ) B(t-x)S(x)\beta(x) B(tx)S(x)β(x) 个女婴。由此可得每单位之间内由所有育龄段的女性所生育的女婴数应为:
B ( t ) = ∫ 0 ∞ B ( t − x ) S ( x ) β ( x )   d x B(t)=\int_{0}^{\infty}B(t-x)S(x)\beta(x)\,dx B(t)=0B(tx)S(x)β(x)dx
根据过去和未来的生育情况,将上述积分分成两段:
B ( t ) = ∫ t ∞ B ( t − x ) S ( x ) β ( x )   d x + ∫ 0 t B ( t − x ) S ( x ) β ( x )   d x B(t)=\int_{t}^{\infty}B(t-x)S(x)\beta(x)\,dx+\int_{0}^{t}B(t-x)S(x)\beta(x)\,dx B(t)=tB(tx)S(x)β(x)dx+0tB(tx)S(x)β(x)dx
这是一个更新方程,其中 f ( x ) = S ( x ) β ( x ) f(x)=S(x)\beta(x) f(x)=S(x)β(x) H ( x ) = ∫ t ∞ B ( t − x ) S ( x ) β ( x )   d x H(x)=\int_{t}^{\infty}B(t-x)S(x)\beta(x)\,dx H(x)=tB(tx)S(x)β(x)dx

做变量替换 x = y + t x=y+t x=y+t ,得:
H ( t ) = ∫ 0 ∞ B ( − y ) S ( y + t ) β ( y + t )   d y H(t)=\int_{0}^{\infty}B(-y)S(y+t)\beta(y+t)\,dy H(t)=0B(y)S(y+t)β(y+t)dy
H ( t ) H(t) H(t) 是由年龄为 t t t 或更大的女性在单位时间 [ t ,   t + d t ] [t,\,t+dt] [t,t+dt] 内生育的女婴数;此外,每一个新生的女婴将在期待年龄 [ x ,   x + d x ] [x,\,x+dx] [x,x+dx] 内生育 f ( x )   d x f(x)\,dx f(x)dx 个女婴。于是,每一个新生的女婴在死亡或生存到年龄 x x x 之前将期待生育 F ( x ) = ∫ 0 x f ( x )   d x F(x)=\int_{0}^{x}f(x)\,dx F(x)=0xf(x)dx 个女婴,从而她一生将期待生育 F ( ∞ ) F(\infty) F() 个女婴。

F ( ∞ ) > 1 F(\infty)>1 F()>1 ,则 B ( t ) ∼ C e − R t B(t)\sim Ce^{-Rt} B(t)CeRt t → ∞ t\to \infty t)(我解不出来。。。),其中 C C C 为常数, R R R 满足方程:
∫ 0 ∞ e R y S ( y ) β ( y )   d y = 1 \int_{0}^{\infty}e^{Ry}S(y)\beta(y)\,dy=1 0eRyS(y)β(y)dy=1
即出生率(以及具有此速率的人群)将以渐进指数增长。

F ( ∞ ) < 1 F(\infty)<1 F()<1 k > 0 k>0 k>0 B ( t ) B(t) B(t) 渐进指数地趋于 0,也就是说人群最终要消亡;只有当 F ( ∞ ) = 1 F(\infty)=1 F()=1 时,出生率最终将趋于一个有限的正数。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Air浩瀚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值