算法篇08---二叉搜索树的遍历、插入、查询、删除

一、树

1. 概念

        之前讲了线性的数据结构:数组、列表、栈、队列,哈希表;接下来看树状结构,比如目录结构。

        树是一种可以递归定义的数据结构,树有n个节点组成的集合:

  • 如果n=0 ,是一颗空树;
  • 如果n>0,那存在1个节点作为树的根节点,其他节点可以分为m个集合,每个集合本身又是一棵树。

2. 实例:模拟文件系统

# 创建一个文件
class Node:
    def __init__(self,name,type='dir'):
        self.name = name
        self.tyoe = type
        self.children=[]
        self.parent=None
# 将文件链式存储
class FileSystemTree:
    def __init__(self):
        self.root = Node('/')
        self.now = self.root

    def mkdir(self,name):
        if name[-1] != '/':
            name += '/'
        node = Node(name)
        self.now.children.append(node)
        node.parent = self.now

    def ls(self):
        return self.now.children

    def cd(self,name):  # 切换目录
        # 只支持向下走一层
        if name[-1] != '/':
            name+='/'
        # 返回上一层
        if name == '../':
            self.now=self.now.parent
            return
        for child in self.now.children:
            if child.name == name:
                self.now = child
                return
        raise ValueError("invalid dir")

二、 二叉树的链式存储

将二叉树的节点定义为一个对象,节点之间通过类似 链表 的链接方式来连接。

class class BiTreeNode(object):
    def __init__(self,data):
        self.data = data
        self.lchild = None  # 左孩子
        self.rchild = None  # 右孩子

a=BiTreeNode('A')
b=BiTreeNode('B')
c=BiTreeNode('C')
d=BiTreeNode('D')
e=BiTreeNode('E')
f=BiTreeNode('F')
g=BiTreeNode('G')

e.lchild=a
e.rchild=g
a.rchild=c
c.lchild=b
c.rchild=d
g.rchild=f

root=e

三、二叉树的遍历

1. 前序遍历 E|ACBD|GF

2. 中序遍历 ABCD|E|GF

3. 后序遍历 BDCA|FG|E

4. 层次遍历  EAGCFBD  ----使用到队列,访问出队元素的左右孩子。

# 前序遍历
def pre_order(root):
    if root:
        print(root.data,end=',')
        pre_order(root.lchild)
        pre_order(root.rchild)
# 中序遍历
def in_order(root):
    if root:
        in_order(root.lchild)
        print(root.data,end=',')
        in_order(root.rchild)
# 后序遍历
def post_order(root):
    if root:
        post_order(root.lchild)
        post_order(root.rchild)
        print(root.data,end=',')
pre_order(tree1)
# 层次遍历
from collections import deque

def level_order(root):
    queue = deque()
    queue.append(root)
    while len(queue) > 0:   # 只要队不空
        node = queue.leftpop()   # 父节点出队,它的左右孩子进队
        print(node.data,end=',')    # 输出父节点的data
        if node.lchild:    # 左孩子不空
            queue.append(node.lchild)
        if node.rchild:  
            queue.append(node.rchild)

例题:

        如果给出前序遍历和中序遍历,怎么画出原本的二叉树,并给出后序遍历?

层次遍历不仅适用于二叉树,也适用于其他树。

# 层次遍历
from collections import deque


def level_order(root):
    queue = deque()   # 先创建一个队列
    queue.append(root)

    while len(queue)>0:   # 重要队列不空
        node = queue.popleft()
        print(node.data,end=",")
        if node.lchild:  # 左子树不空
            queue.qppend(node.lchild)
        if node.rchild:  # 右子树不空
            queue.append(node.rchild)

四、 二叉搜索树(BST)---查询、插入(叶子节点下)、搜索

  • 查询:最多查 二叉树的深度 次,大概时间复杂度 log(n)
  • 插入:时间复杂度 log(n)

二叉搜索树的中序序列一定是升序的。

# 二叉树的实现
class BiTreeNode:
    def __init__(self,data):
        self.data = data
        self.lchild = None
        self.rchild = None
        self.parent = None

# 二叉搜索树中 查询、插入、删除 操作
class BST:
    def __init__(self,li=None):
        self.root = None
        if li:
            for val in li:
                self.insert_no_rec(val)   # 使用非递归方式插入val
    # 插入(递归和不递归)
    def insert(self,node,val):   # 递归插入
        if not node:
            node = BiTreeNode(val)
        elif val < node.data:
            node.lchild = self.insert(node.lchild,val)
            node.lchild.parent = node
        elif val > node.data:
            node.rchild = self.insert(node.rchild,val)
            node.rchild.parent = node
        return node

    def insert_no_rec(self,val):
        p = self.root
        if not p:   #空树
            self.root = BiTreeNode(val)    # 更新root的值
            return
        while True:    # 不是空树
            if val < p.data:
                if p.lchild:   # 左孩子存在
                    p = p.lchild
                else:    # 到达叶子节点,即将执行插入操作
                    p.lchild = BiTreeNode(val)   # 左孩子不存在,创建节点,双向链接
                    p.lchild.parent = p
                    return
            elif val > p.data:
                if p.rchild:
                    p = p.rchild
                else:
                    p.rchild = BiTreeNode(val)
                    p.rchild.parent = p
                    return
            else:
                return
    # 查询
    def query(self,node,val):
        if not node:
            return None
        elif node.data > val:
            return query(node.lchild,val)
        elif node.data < val:
            return query(node.rchild,val)
        else:
            return node

    def query_no_sec(self,val):
        p = self.root
        while p:
            if p.data > val:
                p = p.lchild
            elif p.data < val:
                p = p.rchild
            else:
                return p
        return None

    # 删除操作----三种情况:node是叶子节点、node只有一个孩子、node有两个孩子
    def __delete_mode_1(self,node):   # 1.删除节点node,node是叶子节点
        if node.parent == None:
            self.root = None
        else:
            if node == node.parent.lchild:   # node是左孩子
                node.parent.lchild = None
            elif node == node.parent.rchild:
                node.parent.rchild = None

    def __delete_mode_21(self,node):   # 2.1 删除节点node,node只有左孩子
        if node.parent == None:   # node是根节点
            self.root = node.lchild
            node.lchild.parent = None
        elif node == node.parent.lchild:  # node是左孩子
            node.parent.lchild = node.lchild
            node.lchild.parent = node.parent
        else:  # node == node.parent.rchild   # node是右孩子
            node.parent.rchild = node.lchild
            node.lchild.parent = node.parent

    def __delete_mode_22(self,node):   # 2.2 删除节点node,node只有右孩子
        if node.parent == None:   # node是根节点
            self.root = node.rchild
        elif node == node.parent.lchild:   # node是左孩子
            node.parent.lchild = node.rchild
            node.rchild.parent = node.parent
        else:   # node == node.parent.rchild  # node是右孩子
            node.parent.rchild = node.rchild
            node.rchild.parent = node.parent

    def delete(self,val):
        if self.root:   # 不是空树
            node = self.query_no_sec(val)
            if node == None:   # 二叉搜索树中找不到node
                return False
            elif node.lchild == None and node.rchild == None:  # 情况1:node是叶子节点
                self.__delete_mode_1(node)
            elif node.rchild == None:   # 情况2: node只有左孩子
                self.__delete_mode_21(val)
            elif node.lchild ==None:    # 情况2: node只有右孩子
                self.__delete_mode_22(val)
            # 3. node的左右孩子都有:用右子树中的最小值 替换node
            else:
                min_node = node.rchild
                while min_node.lchild:   # 右子树中沿着左子树一直往下:得到最小值
                    min_node = min_node.lchild
                node.data = min_node.lchild   # node.data被min_node的data替换
                if min_node.rchild:   # 最小值节点存在右子树(只有右子树):情形2.1
                    self.__delete_mode_22(min_node)
                else:   # 没有右子树:情形1
                    self.__delete_mode_1(min_node)

    # 前序遍历
    def pre_order(self,root):
        if root:   # 如果根节点不为空
            print(root.data,end=',')
            self.pre_order(root.lchild)
            self.pre_order(root.rchild)
    # 中序遍历
    def in_order(self,root):
        if root:
            self.in_order(root.lchild)
            print(root.data,end=',')
            self.in_order(root.rchild)
    # 后序遍历
    def post_order(self,root):
        if root:
            self.post_order(root.lchild)
            self.post_order(root.rchild)
            print(root.data,end=',')

import random
list1=list(range(10))
random.shuffle(list1)

tree = BST(list1)   #将这个列表插入(装换)二叉搜索树中

#插入
# tree.pre_order(tree.root)
# print("")
# tree.in_order(tree.root)    # 二叉搜索树的中序遍历是升序
# print("")
# tree.post_order(tree.root)
#查询
# print(tree.query_no_sec(5))
#删除
# tree.in_order(tree.root)
# print("")
# tree.delete(3)
# tree.in_order(tree.root)
# print("")
# tree.delete(4)
# tree.in_order(tree.root)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值