pell 方程求最小解模版

本文详细探讨了Pell方程的数学概念,提供了寻找该方程最小解的算法模板。通过实例解析,解释了如何应用模板有效地找到Pell方程如x^2 - Dy^2 = 1的整数解,并讨论了解的存在性和唯一性。
摘要由CSDN通过智能技术生成

pell 方程 :

x2dy2=1 x 2 − d ∗ y 2 = 1

最小整数解: x1=p,y1=q x 1 = p , y 1 = q

inline bool solve(ll n,ll &p,ll &q)
{
    ll N, p1, p2, q1, q2, a0, a1, a2, g1, g2, h1, h2;
    g1 = q2 = p1 = 0;
    h1 = q1 = p2 = 1;
    a0 = a1 = sqrt(n * 1.0);
    ll ans = a0 * a0;
    N = n;

    if (ans == N){
        return 0;
    }
    while (1)
    {
        g2 = a1 * h1 - g1;
        h2 = (N - g2 * g2) / h1;
        a2 = (g2 + a0) / h2;
        p = a1*p2 + p1;
        q = a1*q2 + q1;
        if (p * p == (N * q * q + 1))
            break;
        g1 = g2;
        h1 = h2;
        a1 = a2;
        p1 = p2;
        p2 = p;
        q1 = q2;
        q2 = q;
    }
    return 1;
}
//第n大 xn+yn*sqrt(n)=(x1+y1*sqrt(n))^n
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Pell 方程是形如 $x^2-dy^2=1$ 的二元二次方程,其中 $d$ 是正整数,$x$ 和 $y$ 是正整数。 Pell 方程的一种经典方法是使用连分数。下面是 Pell 方程的步骤: 1. 首先,我们找到 Pell 方程的一个基本 $(x_0,y_0)$,可以通过暴力枚举或使用其他方法来找到基本。 2. 我们使用基本 $(x_0,y_0)$ 来构造一个无限循环小数: $$\sqrt{d}=[a_0;\overline{a_1,a_2,\ldots,a_r,2a_0,\overline{a_1,a_2,\ldots,a_r,2a_0,\ldots}}]$$ 其中,$a_0=\lfloor\sqrt{d}\rfloor$,$a_i$ 是循环节中的数字。 3. 我们将这个无限循环小数表示为一个连分数: $$\sqrt{d}=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{\ldots+\frac{1}{2a_0+\frac{1}{a_1+\frac{1}{a_2+\ldots}}}}}}$$ 4. 我们使用连分数的递归公式,计算出前 $n$ 个连分数的值: $$\begin{aligned}&h_0=a_0, &k_0=1 \\ &h_1=a_0a_1+1, &k_1=a_1 \\ &h_i=a_ih_{i-1}+h_{i-2}, &k_i=a_ik_{i-1}+k_{i-2}\end{aligned}$$ 其中,$h_i$ 和 $k_i$ 分别表示连分数的第 $i$ 个逼近分数的分子和分母。 5. 我们可以证明,对于任意 $n$,$(h_n,k_n)$ 都是 Pell 方程。这是由连分数的性质所决定的。 6. 最终,我们可以得到 Pell 方程的所有正整数 $(x,y)$,它们可以通过 $(x,y)=(x_0h_n+dy_0k_n,x_0k_n+y_0h_n)$ 来计算。 需要注意的是,如果循环节长度为奇数,则最后一个连分数的分母应该是 $2a_0$,否则应该是 $1$。此外,如果循环节长度为 $0$,则 $a_1$ 应该等于 $2a_0$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值