辗转相除法证明

辗转相除法证明

  • 辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至公元前300年前。

设 a,b(a>b),求a,b的最大公约数,即gcd(a,b);
首先我们a除以b的到整数q和余数r,那么a=q*b+r;
当r=0时,b为a,b的最大公约数。
当r!=0时,从上式中可得到 a,b 的公约数也是r的约数。为什么?我们先把上式写成r=a-q*b,我们假设 c为a,b 的约数,a=a1*c,b=b1*c,那么r= a1*c-q*b1*c;r=(a1-q*b1)*c;由此可得知c也是r的约数;
所以我们可以继续b/r直到r为0,我们就得出a,b的最大公约数了。

思路来自:http://blog.csdn.net/niushuai666/article/details/7278027

c++代码:

int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值