辗转相除法证明
- 辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至公元前300年前。
设 a,b(a>b),求a,b的最大公约数,即gcd(a,b);
首先我们a除以b的到整数q和余数r,那么a=q*b+r;
当r=0时,b为a,b的最大公约数。
当r!=0时,从上式中可得到 a,b 的公约数也是r的约数。为什么?我们先把上式写成r=a-q*b,我们假设 c为a,b 的约数,a=a1*c,b=b1*c,那么r= a1*c-q*b1*c;r=(a1-q*b1)*c;由此可得知c也是r的约数;
所以我们可以继续b/r直到r为0,我们就得出a,b的最大公约数了。
思路来自:http://blog.csdn.net/niushuai666/article/details/7278027
c++代码:
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}